industry news
Subscribe Now

CEVA Announces Industry’s First High Performance Sensor Hub DSP Architecture

  •  SensPro™ family serves as hub for processing and fusing of data from multiple sensors including camera, Radar, LiDAR, Time-of-Flight, microphones and inertial measurement units
  • • Highly-configurable and self-contained architecture brings together scalar and parallel processing for floating point and integer data types, as well as deep learning training and inferencing
MOUNTAIN VIEW, Calif., – April 7, 2020 – CEVA, Inc. (NASDAQ: CEVA), the leading licensor of wireless connectivity and smart sensing technologies, today announced SensPro™, the industry’s first high performance sensor hub DSP architecture designed to handle the broad range of sensor processing and sensor fusion workloads for contextually-aware devices.
SensPro addresses the need for specialized processors to efficiently handle the proliferation of different types of sensors that are required in smartphones, robotics, automotive, AR/VR headsets, voice assistants, smart home devices and for emerging industrial and medical applications that are being revolutionized with initiatives like Industry 4.0. These sensors, among which are camera, Radar, LiDAR, Time-of-Flight (ToF), microphones and inertial measurement units (IMU), generate a multitude of data types and bit-rates derived from imaging, sound, RF and motion, which can be used to create a full 3D contextually-aware device.
Built from the ground up to maximize performance-per-watt for complex multi-sensor processing use cases, the SensPro architecture offers a combination of high performance single and half precision floating-point math required for high dynamic range signal processing, point cloud creation and deep neural network (DNN) training, along with a large amount of 8- and 16-bit parallel processing capacity required for voice, imaging, DNN inference processing and Simultaneous Localization and Mapping (SLAM). SensPro incorporates CEVA’s widely used CEVA-BX scalar DSP, which offers a seamless migration path from single sensory system designs to multi-sensor, contextual-aware designs.
Dimitrios Damianos, technology & market analyst of the sensing division at Yole Développement (Yole) commented: “The proliferation of sensors in intelligent systems continues to increase, providing more precise modeling of the environment and context. Sensors are becoming smarter, and the goal is not to get more and more data from them, but higher quality of data especially in cases of environment/surround perception such as: environmental sensor hubs that use a combo of microphones, pressure, humidity, inertial, temperature and gas sensors (smart homes/offices) as well as situational awareness in ADAS/AV where many sensors (radar, LIDAR, cameras, IMU, ultrasonic, etc) must work together to make sense of their surroundings“ (1).
Yohann Tschudi, technology & market analyst, computing and software, at Yole continues: “The challenge is to process and fuse different types of data from different types of sensors. Using a mix of scalar and vector processing, floating and fixed point math coupled with an advanced micro-architecture, SensPro offers system and SoC designers a unified processor architecture to address the needs of any contextually-aware multi-sensor device.”
SensPro uses a highly-configurable 8-way VLIW architecture, allowing it to be easily tuned to address a wide range of applications. It employs a state-of-the-art micro-architecture that combines scalar and vector processing units and incorporates an advanced, deep pipeline enabling operating speeds of 1.6GHz at a 7nm process node. SensPro incorporates a CEVA-BX2 scalar processor for control code execution with a 4.3 CoreMark/MHz score. It adopts a wide SIMD scalable processor architecture for parallel processing and is configurable for up to 1024 8×8 MACs, 256 16×16 MACs, dedicated 8×2 Binary Neural Networks support, as well as 64 single precision and 128 half precision floating point MACs. This allows it to deliver 3 TOPS for 8×8 networks inferencing, 20 TOPS for Binary Neural Networks inferencing, and 400 GFLOPS for floating point arithmetic. Other key features of SensPro include a memory architecture providing a bandwidth of 400GB per second, 4-way instruction cache, 2-way vector data cache, DMA, and queue and buffer managers for offloading the DSP from data transactions.
SensPro is accompanied by an advanced set of software and development tools to expedite system designs including an LLVM C/C++ compiler, Eclipse based integrated development environment (IDE), OpenVX API, software libraries for OpenCL, CEVA deep neural network (CDNN) graph compiler including the CDNN-Invite API for inclusion of custom AI engines, CEVA-CV imaging functionsCEVA-SLAM software development kit and vision librariesClearVox noise reductionWhisPro speech recognitionMotionEngine sensor fusion, and the SenslinQ software framework.
Initially, SensPro DSPs will be available in three configurations, each including a CEVA-BX2 scalar processor and various vector units configured for optimal use-case handling:
• SP250 – single vector unit with 256 8×8 MACs targeting imaging, vision, and sound centric applications
• SP500F – single vector unit with 512 8×8 MACs and 64 single precision floating point MACs targeting SLAM centric applications
• SP1000 – dual vector units with 1024 8×8 MACs and binary networks support targeting AI centric applications
Ran Snir, Vice President of Research and Development at CEVA, commented: “With the growth in the number and variety of sensors in modern systems, and their substantially different computation needs, we set out to design a new architecture from the ground up to address this challenge. We constructed SensPro as a highly configurable, holistic architecture that could handle these intensive workloads using a combination of scalar, vector processing and AI acceleration, while utilizing the latest micro-architecture design techniques of deep pipelining, parallelism, and multi-tasking. The result is the most powerful DSP architecture ever conceived for sensor hubs and we’re truly excited to work with our customers and partners to bring contextually-aware products to market based on it.”
Availability
The SensPro architecture and cores will be made available for general licensing starting in Q3 2020. For more information, visit https://www.ceva-dsp.com/product/ceva-SensPro/.

 

(1) Sources: Status of the MEMS Industry report, Yole Développement 2019 – AI for Consumer report, Yole Développement, 2019

 

About CEVA, Inc.
CEVA is the leading licensor of wireless connectivity and smart sensing technologies. We offer Digital Signal Processors, AI processors, wireless platforms and complementary software for sensor fusion, image enhancement, computer vision, voice input and artificial intelligence, all of which are key enabling technologies for a smarter, connected world. We partner with semiconductor companies and OEMs worldwide to create power-efficient, intelligent and connected devices for a range of end markets, including mobile, consumer, automotive, robotics, industrial and IoT. Our ultra-low-power IPs include comprehensive DSP-based platforms for 5G baseband processing in mobile and infrastructure, advanced imaging and computer vision for any camera-enabled device and audio/voice/speech and ultra-low power always-on/sensing applications for multiple IoT markets. For sensor fusion, our Hillcrest Labs sensor processing technologies provide a broad range of sensor fusion software and IMU solutions for AR/VR, robotics, remote controls, and IoT. For artificial intelligence, we offer a family of AI processors capable of handling the complete gamut of neural network workloads, on-device. For wireless IoT, we offer the industry’s most widely adopted IPs for Bluetooth (low energy and dual mode), Wi-Fi 4/5/6 (802.11n/ac/ax) and NB-IoT. Visit us at http://www.ceva-dsp.com and follow us on TwitterYouTube, FacebookLinkedIn and Instagram.

Leave a Reply

featured blogs
Oct 23, 2020
Processing a component onto a PCB used to be fairly straightforward. Through hole products, a single or double row surface mount with a larger center-line rarely offer unique challenges obtaining a proper solder joint. However, as electronics continue to get smaller and conne...
Oct 23, 2020
[From the last episode: We noted that some inventions, like in-memory compute, aren'€™t intuitive, being driven instead by the math.] We have one more addition to add to our in-memory compute system. Remember that, when we use a regular memory, what goes in is an address '...
Oct 23, 2020
Any suggestions for a 4x4 keypad in which the keys aren'€™t wobbly and you don'€™t have to strike a key dead center for it to make contact?...
Oct 23, 2020
At 11:10am Korean time this morning, Cadence's Elias Fallon delivered one of the keynotes at ISOCC (International System On Chip Conference). It was titled EDA and Machine Learning: The Next Leap... [[ Click on the title to access the full blog on the Cadence Community ...

featured video

Better PPA with Innovus Mixed Placer Technology – Gigaplace XL

Sponsored by Cadence Design Systems

With the increase of on-chip storage elements, it has become extremely time consuming to come up with an optimized floorplan with manual methods. Innovus Implementation’s advanced multi-objective placement technology, GigaPlace XL, provides automation to optimize at scale, concurrent placement of macros, and standard cells for multiple objectives like timing, wirelength, congestion, and power. This technology provides an innovative way to address design productivity along with design quality improvements reducing weeks of manual floorplan time down to a few hours.

Click here for more information about Innovus Implementation System

featured paper

An engineer’s guide to autonomous and collaborative industrial robots

Sponsored by Texas Instruments

As robots are becoming more commonplace in factories, it is important that they become more intelligent, autonomous, safer and efficient. All of this is enabled with precise motor control, advanced sensing technologies and processing at the edge, all with robust real-time communication. In our e-book, an engineer’s guide to industrial robots, we take an in-depth look at the key technologies used in various robotic applications.

Click here to download the e-book

Featured Chalk Talk

Benefits of FPGAs & eFPGA IP in Futureproofing Compute Acceleration

Sponsored by Achronix

In the quest to accelerate and optimize today’s computing challenges such as AI inference, our system designs have to be flexible above all else. At the confluence of speed and flexibility are today’s new FPGAs and e-FPGA IP. In this episode of Chalk Talk, Amelia Dalton chats with Mike Fitton from Achronix about how to design systems to be both fast and future-proof using FPGA and e-FPGA technology.

Click here for more information about the Achronix Speedster7 FPGAs