industry news
Subscribe Now

Coventor Announces SEMulator3D 6.0 and New Electrical Analysis Capabilities

CARY, NC– June 6, 2016 – Coventor®, Inc., the leading supplier of automated software solutions for semiconductor devices and micro-electromechanical systems (MEMS), today announced the availability of SEMulator3D® 6.0 – the latest version of its semiconductor virtual fabrication platform.   This new version further increases the accuracy of the process simulation, geometry and modeling of advanced semiconductor processes with new features, usability enhancements and a new add-on capability for electrical analysis. Along with SEMulator3D 6.0, Coventor is releasing an all-new SEMulator3D Electrical Analysis add-on component that allows seamless resistance and capacitance extraction directly from SEMulator3D process-predictive 3D models.

SEMulator3D Electrical Analysis

In semiconductor device fabrication, the various processing steps have grown increasingly complex as smaller semiconductor feature sizes and nodes are developed.   With shrinking process technologies, parasitic effects of devices and interconnects have a significant impact on circuit performance.  SEMulator3D Electrical Analysis builds in new features and solvers so that users can better understand resistance and capacitance impacts of design and process variation.  

“The real break-through here is our ability to solve for resistance and capacitance dramatically faster than any other software, without ever leaving the SEMulator3D environment.  There is no meshing or data export required,” said David Fried, CTO – Semiconductor for Coventor.  “Now, our users can link the process variations in the fab and the design choices of the product to real electrical impact, through process-predictive structural modeling and our new advanced Electrical Analysis tool.” 

SEMulator3D 6.0 Productivity Enhancements

SEMulator3D 6.0 enables accurate modeling and performance prediction for next-generation processes including FinFETs, 3D NAND Flash, BEOL, Nanowires, 3D-IC, FDSOI, and DRAM.  The new version includes the following usability enhancements:  

  • New Analysis Editor environment

    • The tool now separates analysis steps, such as metrology, structure search and parasitic extraction from the process sequence for improved usability, faster analysis run-times and simpler collaborative deployment.

  • Tracking virtual defects

    • Defect insertion and placement has been enhanced to allow for random, systematic and arrayed defectivity, reflecting the various sources of possible manufacturing issues in the fab.   This diagnostic improvement enables a known defect to be traced back to the originating process step or tool that may have created it.

  • Support for additional structural export formats

    • SEMulator3D now allows users to export meshes to additional file formats, including dopant concentrations, for use in 3rd-party FEA/BEA software.  This provides users the benefit of having the accuracy of the SEMulator3D process simulation and geometry along with the ability to model additional complex physical phenomena using other tools.

About Coventor

Coventor, Inc. is the market leader in automated design solutions for developing semiconductor process technology, as well as micro-electromechanical systems (MEMS). Coventor serves a worldwide customer base of integrated device manufacturers, memory suppliers, fabless design houses, independent foundries, and R&D organizations. Its SEMulator3D modeling and analysis platform is used for fast and accurate ‘virtual fabrication’ of advanced manufacturing processes, allowing engineers to understand manufacturing effects early in the development process and reduce time-consuming and costly silicon learning cycles. Its MEMS design solutions are used to develop MEMS-based products for automotive, aerospace, industrial, defense, and consumer electronics applications, including smart phones, tablets, and gaming systems. The company is headquartered in Cary, North Carolina and has offices in California’s Silicon Valley; Waltham, Massachusetts; and Paris, France.  More information is available at http://www.coventor.com.


Leave a Reply

featured blogs
Sep 21, 2023
Wireless communication in workplace wearables protects and boosts the occupational safety and productivity of industrial workers and front-line teams....
Sep 21, 2023
Labforge is a Waterloo, Ontario-based company that designs, builds, and manufactures smart cameras used in industrial automation and defense applications. By bringing artificial intelligence (AI) into their vision systems with Cadence , they can automate tasks that are diffic...
Sep 21, 2023
At Qualcomm AI Research, we are working on applications of generative modelling to embodied AI and robotics, in order to enable more capabilities in robotics....
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....
Sep 21, 2023
See how we're accelerating the multi-die system chip design flow with partner Samsung Foundry, making it easier to meet PPA and time-to-market goals.The post Samsung Foundry and Synopsys Accelerate Multi-Die System Design appeared first on Chip Design....

Featured Video

Chiplet Architecture Accelerates Delivery of Industry-Leading Intel® FPGA Features and Capabilities

Sponsored by Intel

With each generation, packing millions of transistors onto shrinking dies gets more challenging. But we are continuing to change the game with advanced, targeted FPGAs for your needs. In this video, you’ll discover how Intel®’s chiplet-based approach to FPGAs delivers the latest capabilities faster than ever. Find out how we deliver on the promise of Moore’s law and push the boundaries with future innovations such as pathfinding options for chip-to-chip optical communication, exploring new ways to deliver better AI, and adopting UCIe standards in our next-generation FPGAs.

To learn more about chiplet architecture in Intel FPGA devices visit https://intel.ly/45B65Ij

featured paper

Intel's Chiplet Leadership Delivers Industry-Leading Capabilities at an Accelerated Pace

Sponsored by Intel

We're proud of our long history of rapid innovation in #FPGA development. With the help of Intel's Embedded Multi-Die Interconnect Bridge (EMIB), we’ve been able to advance our FPGAs at breakneck speed. In this blog, Intel’s Deepali Trehan charts the incredible history of our chiplet technology advancement from 2011 to today, and the many advantages of Intel's programmable logic devices, including the flexibility to combine a variety of IP from different process nodes and foundries, quicker time-to-market for new technologies and the ability to build higher-capacity semiconductors

To learn more about chiplet architecture in Intel FPGA devices visit: https://intel.ly/47JKL5h

featured chalk talk

OPTIGA™ TPM SLB 9672 and SLB 9673 RPI Evaluation Boards
Sponsored by Mouser Electronics and Infineon
Security is a critical design concern for most electronic designs today, but finding the right security solution for your next design can be a complicated and time-consuming process. In this episode of Chalk Talk, Amelia Dalton and Andreas Fuchs from Infineon investigate how Infineon’s OPTIGA trusted platform module can not only help solve your security design concerns but also speed up your design process as well.
Jun 26, 2023
11,152 views