chalk talk
Subscribe Now

Smart Embedded Vision with PolarFire FPGAs — Microchip and Mouser Electronics

 

In embedded vision applications, doing AI inference at the edge is often required in order to meet performance and latency demands. But, AI inference requires massive computing power, which can exceed our overall power budget. In this episode of Chalk Talk, Amelia Dalton talks to Avery Williams of Microchip about using FPGAs to get the machine vision performance you need, without blowing your power, form factor, and thermal requirements.

Click here for more information about Microsemi / Microchip PolarFire FPGA Video & Imaging Kit

Leave a Reply

featured blogs
Oct 15, 2021
We will not let today's gray and wet weather in Fort Worth (home of Cadence's Pointwise team) put a damper on the week's CFD news which contains something from the highbrow to the... [[ Click on the title to access the full blog on the Cadence Community site. ...
Oct 13, 2021
How many times do you search the internet each day to track down for a nugget of knowhow or tidbit of trivia? Can you imagine a future without access to knowledge?...
Oct 13, 2021
High-Bandwidth Memory (HBM) interfaces prevent bottlenecks in online games, AI applications, and more; we explore design challenges and IP solutions for HBM3. The post HBM3 Will Feed the Growing Need for Speed appeared first on From Silicon To Software....
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...