industry news
Subscribe Now

Plessey commits to launching industry’s first monolithic microLED displays by 1H18

Plymouth, ENGLAND – 4 January 2017: Plessey Semiconductor, a leading developer of award-winning optoelectronic technology solutions, today announces its commitment to being the first to market with a monolithic microLED based display based on GaN-on-Silicon.

Plessey has also commenced an extensive licensing programme that will see the company license out its GaN-on-Silicon expertise to microLED manufacturers in line with its new business strategy of becoming the photonic industry’s foremost technology platform provider.

Demand for microLED displays is accelerating with research consultancy Yole Développement forecasting the market could reach up to 330 million units by 2025. GaN-on-Silicon is the only technology platform capable of addressing all of the challenges involved with manufacturing microLED displays in high volumes and cost-effectively, Plessey intends to demonstrate its expertise in the field by being the first to manufacture a monolithic display based on microLEDs fabricated using a GaN-on-Silicon approach.

“We made the decision to become a technology platform provider in order to get our technology out to the widest possible manufacturing base to meet this growing demand,” explained Michael LeGoff, CEO, Plessey Semiconductor. “By being the first to market with a monolithic microLED display we will be demonstrating our expertise and the ability to access our proven turn-key solution, enabling manufacturers to ramp up the development and production of microLED displays to address emerging applications.”

One of the main challenges involved with manufacturing microLED displays using a non-monolithic approach is the placement of LED chips onto a CMOS backplane, currently achieved using pick and place equipment. This involves the individual placement of every LED on a pitch of less than 50μm, requiring new and expensive equipment that is subject to productivity issues. As the pixel density of displays increases and pitch reduces, pick and place becomes less feasible both commercially and technically.

Moving to a monolithic process removes the need for chip placement and will enable smaller and higher resolution displays for a range of applications, including virtual reality (VR), augmented reality (AR), and head-up displays. As the only monolithic solution commercially available, Plessey’s technology doesn’t require pick and place equipment and isn’t subject to the associated productivity issues.

A fully monolithic approach also supports the integration of the standard CMOS circuitry necessary for driving microLED displays, as well as the close integration of high performance graphic processing units (GPUs), all of which can be carried out using standard CMOS manufacturing methods. By solving all of the major challenges, licensees gain instant access to a technology platform that is ready for volume production.

“GaN on Silicon is the only technology that makes sense in terms of scalability and performance,” commented Dr Keith Strickland, CTO, Plessey Semiconductor. “It offers better thermal conductivity than Sapphire and higher luminosity than OLED, which is why this technology is widely acknowledged to be the only one that can deliver high resolution, high luminance displays.”

For further information, please visit: http://www.plesseysemiconductors.com/microled-displays/

About Plessey
Plessey is a leading expert in the development and licensing of technologies that are revolutionising the solid-state lighting sector. With its in-depth understanding and breadth of patents relating to GaN-on- Silicon, the company has established itself as a valued IP partner to OEMs producing the next generation of photonics solutions. Plessey has been successfully licensing its pioneering sensor technology solutions within the healthcare and automotive sectors for many years.

For further information and datasheets, please visit www.plesseysemiconductors.com or email sales@plesseysemi.com. You can also follow Plessey on Twitter, Facebook and LinkedIn.

Leave a Reply

featured blogs
Apr 19, 2024
Data type conversion is a crucial aspect of programming that helps you handle data across different data types seamlessly. The SKILL language supports several data types, including integer and floating-point numbers, character strings, arrays, and a highly flexible linked lis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Autonomous Mobile Robots
Sponsored by Mouser Electronics and onsemi
Robotic applications are now commonplace in a variety of segments in society and are growing in number each day. In this episode of Chalk Talk, Amelia Dalton and Alessandro Maggioni from onsemi discuss the details, functions, and benefits of autonomous mobile robots. They also examine the performance parameters of these kinds of robotic designs, the five main subsystems included in autonomous mobile robots, and how onsemi is furthering innovation in this arena.
Jan 24, 2024
12,479 views