industry news
Subscribe Now

New 1-MHz active clamp flyback chipset and industry-first 6-A three-level buck battery charger from TI cut power supply size and charge time in half

DALLAS (March 1, 2018) – Texas Instruments (TI) (NASDAQ: TXN) today introduced several new power management chips that enable designers to boost efficiency and shrink power-supply and charger solution sizes for personal electronics and handheld industrial equipment.

Operating at up to 1 MHz, TI’s new chipset combines the UCC28780 active clamp flyback controller and the UCC24612 synchronous rectifier controller to help cut the size of power supplies in AC/DC adapters and USB Power Delivery chargers in half. For battery-powered electronics that need maximum charging efficiency in a small solution size, the bq25910 6-A three-level buck battery charger enables up to a 60 percent smaller-solution footprint in smartphones, tablets and electronic point-of-sale devices.

“Consumers want faster charging in a smaller footprint. These new solutions not only accomplish that, but also enable designers to do more than they could before with less power,” said Steve Lambouses, TI vice president, High Voltage Power.

Explore these new power-management devices and learn about other ways TI is giving engineers the power to innovate, design and learn by visiting booth No. 501 at the Applied Power Electronics Conference (APEC) in San Antonio, Texas, March 4-8, 2018.

Active clamp flyback chipset meets modern efficiency standards

Designed to work with both gallium nitride (GaN) and silicon (Si) FETs, the UCC28780’s advanced and adaptive features enable the active clamp flyback topology to meet modern efficiency standards. With multimode control that changes the operation based on input and output conditions, pairing the UCC28780 with the UCC24612 can achieve and maintain high efficiency at full and light loads. For more information, see and

  • Double the power density: The chipset delivers efficient operation at up to 1 MHz, enabling a size reduction of 50 percent and higher power density than solutions today.
  • High efficiency: Multimode control enables efficiency up to 95 percent at full loads and standby power of less than 40 mW, exceeding Code of Conduct (CoC) Tier 2 and U.S. Department of Energy (DoE) Level VI efficiency standards. For designs above 75 W, engineers can also pair the chipset with a new six-pin power-factor correction (PFC) controller, the UCC28056, which is optimized for light-load efficiency and low standby power consumption to achieve compliance with mandatory International Electrotechnical Commission (IEC)-61000-3-2 AC current harmonic limit regulations.
  • Simplified design: Using features such as adaptive zero voltage switching (ZVS) control, engineers can easily design their systems with a combination of resistor settings and controller auto-tuning.

Three-level buck battery charger enables higher charging efficiency

Leveraging an innovative three-level power-conversion technology, the bq25910 enables up to 50 percent faster charging compared to conventional architectures by dramatically reducing thermal loss. For more information, see

  • Small solution size: With integrated MOFSETs and lossless current sensing, the bq25910 reduces printed circuit board (PCB) space and allows designers to use small 0.33-µH inductors, saving even more space.
  • Faster charging: The bq25910 enables 95 percent charging efficiency, which could take a standard smartphone battery from empty to 70 percent charged in less than 30 minutes.
  • Flexible system design: A differential battery-voltage sense line enables fast charging by bypassing parasitic resistance in the PCB for more accurate voltage measurements, even if the battery is placed away from the charger in the system.

Pricing, package and availability

All of these new devices are available today with pricing, package and evaluation module availability as listed in the following table.







for 1,000-unit quantities





Package type

Small outline integrated circuit (SOIC) and quad flat no-lead (QFN)

Small outline transistor (SOT)-23


Wafer chip-scale package (WCSP)

Evaluation module (EVM)






Learn more about TI’s innovative portfolio of power ICs, tools and training

Leave a Reply

featured blogs
Mar 19, 2018
Occasionally I come across a mishmash of headlines that warrant mention, and these were all reported within the last week! Uber'€™s Autonomous Fail And so it begins. A self-driving Uber car has struck a pedestrian last night, causing the first pedestrian fatality caused by ...
Mar 16, 2018
MICRO RUGGED CONNECTORS Most designers think the smaller the connector, the more fragile and delicate it is.  We don'€™t usually think of micro pitch connectors as being rugged, as being able to handle high mating cycles, or as having robust mechanical strength on the PCB,...
Mar 16, 2018
Executive Insight: Wally Rhines Using thermofluid simulation to optimize liquid cooling of avionics power systems Mentor framework pulls devices into the cloud A Simple Way To Improve Automotive In-System Test The IIoT is Fragmented'€”How Will We Fix It? Executive Insigh...
Mar 5, 2018
Next-generation networking solutions are pushing processing out of the cloud and towards the network'€™s edge. At the same time, processing structures architected around programmable logic provide the ability to make computing much more data-centric. Programmable logic make...