industry news
Subscribe Now

Mentor’s new LightSuite Photonic Compiler automated layout tool speeds integrated photonic design development

Mentor, a Siemens business, today announced LightSuite™ Photonic Compiler – the industry’s first integrated photonic automated layout system. This new tool enables companies designing integrated photonic layouts to describe designs in the Python language, from which the tool then automatically generates designs ready for fabrication. The resulting design is “Correct by Calibre” – with the implementation precisely guided by Mentor’s Calibre® RealTime Custom verification tool. LightSuite Photonic Compiler enables designers to generate as well as update large photonic layouts in minutes versus weeks.

With this breakthrough technology, companies can dramatically speed the development of integrated photonic designs that will bring speed-of-light communications directly into high-speed networking and high-performance computing (HPC) systems. It also speeds the development of more cost-effective LiDAR technology, which is seen as essential to enabling the mass deployment of autonomous vehicles.

“Mentor’s LightSuite Photonic Compiler represents a quantum leap in automating what has up to now been a highly manual, full-custom process that required deep knowledge of photonics as well as electronics,” said Joe Sawicki, vice president and general manager of the Design-to-Silicon Division at Mentor, a Siemens business. “With the new LightSuite Photonic Compiler, Mentor is enabling more companies to push the envelope in creating integrated photonic designs.”

“LightSuite Photonic Compiler fixes the biggest roadblocks preventing industry-wide adoption of electro-optical design and simulation of photonic chips,” said M. Ashkan Seyedi, Ph.D., senior research scientist, Hewlett Packard Enterprise. “Photonic chips promise amazing performance, but designing circuits today is just too difficult and requires specialized knowledge. LightSuite Photonic Compiler circumvents those challenges and enables scalability. I’m thrilled to have worked with Mentor to develop this tool to make it possible for anyone to design and build photonic circuits as easily as designing electronic circuits.”

Until now, photonic designers have been forced to use analog, full-custom IC tools to create photonic designs. In this flow, designers manually place components from a process design kit (PDK) and then interconnect those components manually. Photonic components must be interconnected with curved waveguides. After they have manually placed and interconnected the components, they typically perform a full Calibre physical verification run to check for design rule violations, as Calibre DRC can find violations even in photonic designs.

Mentor designed the new LightSuite Photonic Compiler specifically for photonic layout so that engineers have complete control of their layouts and can use the tool to automatically perform the placement and interconnecting of both photonic and electrical components. The designers create a Python script that is used to drive the LightSuite Photonic Compiler. Initial placement can also be defined in Python, or come from a pre-placed OpenAccess design. Next, the tool interconnects photonics components with curved wave guides. As some of the components might contain built-in electrical elements, the tool will route these electrical connections simultaneously along with the curved waveguides.

LightSuite Photonic Compiler uses Calibre RealTime Custom during the inner placement and routing loop, resulting in a layout that is design-rule correct. The tool enables designers to perform “what-if” design exploration for photonics designs, which was prohibitively time consuming with manual layout. With this new level of automation, designers can generate a new layout in minutes versus weeks for large designs.

Mentor will demonstrate LightSuite Photonic Compiler at ECOC in Rome, September 24 – 26 at Stand 436. LightSuite Photonic Compiler will be available on October 1.

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Achieving High Power Density with IGBT and SiC Power Modules
Sponsored by Mouser Electronics and Infineon
Recent trends in the inverter market have made high power density, scalability, and ease of assembly more important than ever before. In this episode of Chalk Talk, Amelia Dalton and Abraham Markose from Infineon examine how Easy & Econo power modules from Infineon can help solve common inverter design requirements. They explore the benefits and construction of these modules and how you can take advantage of them in your next design.
May 19, 2023
37,391 views