industry news
Subscribe Now

Imec demonstrates efficient cost-effective cooling solution for high performance chips

3D-printed impingement cooling solution exceeds state-of-the-art air-cooled solutions

LEUVEN, May 29, 2018 — Imec, the world-leading research and innovation hub in nano-electronics and digital technology, today announced that it has demonstrated for the first time a low-cost impingement-based solution for cooling chips at package level. This achievement is an important innovation to tackle the ever-increasing cooling demands of high-performance 3D chips and systems.

High performance electronic systems are coping with increasing cooling demands. Conventional solutions realize cooling through combining heat exchangers that are bonded to heat spreaders that are then attached to the chip backside. These are all interconnected with thermal interface materials (TIM) that create a fixed thermal resistance that can’t be overcome by introducing more efficient cooling solutions. Direct cooling on the chip backside would be more efficient, but current direct cooling microchannel solutions create a temperature gradient across the chip surface.

The ideal chip cooler is an impingement-based cooler with distributed coolant outlets. It puts the cooling liquid in direct contact with the chip and sprays the liquid perpendicular to the chip surface. This ensures that all the liquid on the chip surface has the same temperature and reduces the contact time between coolant and chip. However, current impingement coolers have the drawback that they are silicon-based and thus expensive, or that their nozzle diameters and use processes are not compatible with the chip packaging process flow.

Imec has developed a new impingement chip cooler that uses polymers instead of silicon, to achieve a cost-effective fabrication. Moreover, imec’s solution features nozzles of only 300µm, made by high-resolution stereolithography 3D printing. The use of 3D printing allows e customization of the nozzle pattern design to match the heat map and the fabrication of complex internal structures. Moreover, 3D printing allows to efficiently print the whole structure in one part, reducing production cost and time.

“Our new impingement chip cooler is actually a 3D printed ‘showerhead’ that sprays the cooling liquid directly onto the bare chip,” clarifies Herman Oprins, senior engineer at imec. “3D prototyping has improved in resolution, making it available for realizing microfluidic systems such as our chip cooler. 3D printing enables an application-specific design, instead of using a standard design.”

Imec’s impingement cooler achieves a high cooling efficiency, with a chip temperature increase of less than 15°C per 100W/cm2 for a coolant flow rate of 1 l/min. Moreover, it features a pressure drop as low as 0.3 bar, thanks to the smart internal cooler design. It outperforms benchmark conventional cooling solutions in which the thermal interface materials alone already cause a 20-50°C temperature increase. Next to its high efficiency and its cost-effective fabrication, imec’s cooling solution is much smaller compared to existing solutions, matching the footprint of the chip package enabling chip package reduction and more efficient cooling.

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Enabling the Evolution of E-mobility for Your Applications
The next generation of electric vehicles, including trucks, buses, construction and recreational vehicles will need connectivity solutions that are modular, scalable, high performance, and can operate in harsh environments. In this episode of Chalk Talk, Amelia Dalton and Daniel Domke from TE Connectivity examine design considerations for next generation e-mobility applications and the benefits that TE Connectivity’s PowerTube HVP-HD Connector Series bring to these designs.
Feb 28, 2024
7,462 views