industry news
Subscribe to EE Journal Daily Newsletter
6 + 3 =

Solar Antenna technology from NovaSolix: Twice as efficient and 80% less expensive than photo-voltaic technology

Palo Alto, Calif. – April 5, 2017 – NovaSolix today announced the NovaSolix Solar Antenna technology, a disruptive technology enabling solar energy to expand beyond the inherent limitations of photo-voltaic (PV) cells. The NovaSolix Solar Antenna technology converts a much broader spectrum of light waves to electricity than PV through the use of miniature carbon nanotube (CNT) antennas. Prototypes will be available Q4 2017.

The NovaSolix Solar Antenna technology, also known as rectenna, was developed to dramatically improve efficiency, cost, weight and deployment of solar technology, thereby expanding the potential applications of solar energy. Georgia Tech studies of rectenna technology cite theoretical efficiencies of 40-80 – two-to-four times better than PV.

Initial applications will include fixed wing aircraft, drones and satellites. In future iterations, the NovaSolix Solar Antenna technology will replace PV as the dominant form of solar power. Larry Cooke, NovaSolix’s Founder and CTO said, “PV is closing in on its theoretical limits while solar antenna technology is at the very beginnings of its potential.”

“NovaSolix’s Solar Antenna technology will provide electricity at a lower cost, on an unsubsidized basis, than any fossil fuel and will be the lowest cost power available,” said Cooke.

The NovaSolix team includes industry veterans with decades of advanced semiconductor and process manufacturing experience. NovaSolix early estimates indicate the associated costs of manufacturing their technology could be 80-90% percent less than PV. “We are well advanced in the process of productizing our technology. It will have a tremendous impact on renewable energy that is so critical to our world,” Cooke stated. 

About NovaSolix Technology

NovaSolix has developed a truly revolutionary new solar technology. Initially using micron level semiconductor processing, developed using Stanford Nanofabrication Facility’s equipment,

NovaSolix has created quartz based chips on which millions of nanometer diameter carbon nanotubes are grown per square inch. These form low impedance antennas coupled to diodes with petahertz cutoff frequencies, the fastest diodes ever built, enough to capture and rectify up to 80% of all sunlight from infrared down to ultraviolet. Replacing the quartz with flexible rolled glass, NovaSolix will create a continuous high volume roll to roll manufacturing process using micron level printing and maskless self-aligning lithography to produce power at a tenth of the cost of existing PV systems.

The Company has filed 7 patents.

About NovaSolix

Headquartered in Palo Alto, California, NovaSolix is focused on the development and production of renewable solar energy. The NovaSolix Solar Antenna technology converts light waves to electricity through the use of miniature carbon nanotube antennas. This disruptive technology is over two times more efficient than photovoltaic (PV) cells and is up to 10x more cost effective. For more information: info@novasolix.com or 650.850.1535


Leave a Reply

featured blogs
Dec 15, 2017
In my post about Silexica ( Silexica: Mastering Multicore ) I said that I like to use planes as an analogy for cores in a multi-core system. As I said there: They haven't got appreciably faster but you can have lots of them. If you want to transport 10,000 people from Lo...
Dec 15, 2017
FPGA system designers have no shortage of FPGA options for their next-gen end market solution. Xilinx continues to expand their UltraScale+ families. Intel PSG/Altera will ramp Arria 10 and Stratix 10 solutions well in to 2018. New FPGA products require a new generation of FP...
Nov 16, 2017
“Mommy, Daddy … Why is the sky blue?” As you scramble for an answer that lies somewhere between a discussion of refraction in gasses and “Oh, look—a doggie!” you already know the response to whatever you say will be a horrifyingly sincere “B...
Nov 07, 2017
Given that the industry is beginning to reach the limits of what can physically and economically be achieved through further shrinkage of process geometries, reducing feature size and increasing transistor counts is no longer achieving the same result it once did. Instead the...