editor's blog
Subscribe Now

Stop Repeating Yourself

You may recall a while back – actually, a good while back – we looked at parasitic extraction tools and contrasted the field solver approach with Silicon Frontline’s random-walk approach. Reprised really briefly, with the random walk approach, rather than dividing the entire structure up into chunks and solving the whole thing, you follow lots of random paths through dielectric until you hit metal, and, statistically, you end up with the precision needed to determine the parasitics in all three dimensions.

As with all such compute-intensive jobs, the goal is to do it faster than the other guy. Hierarchy turns out to be very useful for that. And Silicon Frontline has just released a new extraction tool, H3D, that leverages hierarchy to achieve “sub-linear” performance: that is, time to completion slows down less than linearly with growth in circuit size.

The idea of using hierarchy is that, if you have a particular cell that you use lots of times, don’t re-solve it every time. If you can recognize that you’ve been there before, then you can move on.

That may sound trivial, but it’s not so simple. As much as possible, H3D uses any hierarchy present in the input file, which sounds pretty obvious. But here’s the deal: it can add hierarchy and it can drop it.

Let’s say that there’s a circuit that’s re-used several times in the design with exactly the same layout and that it’s defined as a block in the input file. The simplistic answer would be to solve it once and pass the answer around to the others. But you can’t quite do that. If one of them is laid out next to a quiet analog block and the other next to some high-drive I/Os, well, they’re no longer the same due to coupling with their neighbors.

So H3D will do some sample walks to determine whether the two instances should, in fact, be treated the same. They claim to have a mathematically rigorous way of deciding when to keep or drop the hierarchy.

By a similar method, they can sometimes identify hierarchy where none was specified in the input. In fact, they can even occasionally do that by a simpler geometric test, but usually they have to do some walks to be sure. You can imagine that if they wanted to be able to find all hierarchy in the design, that becomes a rather laborious pattern-matching problem (you would more or less have to save everything you ever solve and then search that space each time you checked out something new… even with clever techniques, that just sounds like a lot of work). Presumably that’s at least one reason why they don’t claim to take a flat file and automatically discover any inherent hierarchy for you.

Note that this doesn’t just save time in the extraction process; it also saves time in the simulations that the extraction drives.

More details in their release

Leave a Reply

featured blogs
Apr 23, 2024
The automotive industry's transformation from a primarily mechanical domain to a highly technological one is remarkable. Once considered mere vehicles, cars are now advanced computers on wheels, embodying the shift from roaring engines to the quiet hum of processors due ...
Apr 22, 2024
Learn what gate-all-around (GAA) transistors are, explore the switch from fin field-effect transistors (FinFETs), and see the impact on SoC design & EDA tools.The post What You Need to Know About Gate-All-Around Designs appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Achieving High Power Density with IGBT and SiC Power Modules
Sponsored by Mouser Electronics and Infineon
Recent trends in the inverter market have made high power density, scalability, and ease of assembly more important than ever before. In this episode of Chalk Talk, Amelia Dalton and Abraham Markose from Infineon examine how Easy & Econo power modules from Infineon can help solve common inverter design requirements. They explore the benefits and construction of these modules and how you can take advantage of them in your next design.
May 19, 2023
37,194 views