editor's blog
Subscribe Now

What Goes Around

Sitting through iSQED presentations on single-event-upset-tolerant circuits, I couldn’t help but notice the recurrent C2MOS moniker being tossed about. It was unclear to me whether it was stimulating some old, moldy memory or if that was just my imagination.

Some subsequent poking around to learn more proved harder than I expected. The term is tossed out here and there, but it was actually really difficult to confirm what it stands for: Clocked CMOS.

And then I saw a reference to it from 1973: this clearly isn’t new technology. So it is entirely possible that we skimmed through it in my college logic class as one of many digital curiosities.

But it’s apparently being taken seriously today: activity is up since the mid-2000s. The benefit appears to be that latches and flip-flops are much less sensitive to clock overlap issues and race conditions (although they don’t eliminate the normal setup requirements between data and clock.)

A C2MOS latch is really simple. Picture an inverter, which is a two-transistor stack, a P over an N. Now insert another complementary pair of transistors into this stack, so now you have two Ps over two Ns. You drive the added N by CLK and the added P by /CLK. The clock inverter pair isolates the effects of changes to the data from the output. So you set up new data, and only when you toggle the clock are the new values presented to the output. (Some versions show a small keeper on the output since, after the clock reverts back, this is a high-impedance node.)

With this setup, once the new latch data is in place, it doesn’t matter how well timed the CLK and /CLK lines are: the data P and N transistors guarantee the stack to be in a high-impedance state, so you won’t get any crowbar current. (You can get into trouble if the CLK rise and fall times are two slow, but that’s easy to fix. Easy for me to say…)

It is presumably this robustness that is bringing the design style back into favor in circuits that have to be tolerant of an inhospitable welcome.

Leave a Reply

featured blogs
Mar 28, 2024
'Move fast and break things,' a motto coined by Mark Zuckerberg, captures the ethos of Silicon Valley where creative disruption remakes the world through the invention of new technologies. From social media to autonomous cars, to generative AI, the disruptions have reverberat...
Mar 26, 2024
Learn how GPU acceleration impacts digital chip design implementation, expanding beyond chip simulation to fulfill compute demands of the RTL-to-GDSII process.The post Can GPUs Accelerate Digital Design Implementation? appeared first on Chip Design....
Mar 21, 2024
The awesome thing about these machines is that you are limited only by your imagination, and I've got a GREAT imagination....

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured chalk talk

Neutrik powerCONĀ®: Twist and Latch Locking AC Power Connectors
Sponsored by Mouser Electronics and Neutrik
If your next design demands frequent connector mating and unmating and use in countries throughout the world, a twist and latch locking AC power connector would be a great addition to your system design. In this episode of Chalk Talk, Amelia Dalton and Fred Morgenstern from Neutrik explore the benefits of Neutrik's powerCONĀ® AC power connectors, the electrical and environmental specifications included in this connector family, and why these connectors are a great fit for a variety of AV and industrial applications.Ā 
Nov 27, 2023
16,245 views