Back to Editors' Blog

Speeding up FLASH

by Bryon Moyer

January 10, 2012 at 1:10 PM

Most of what you hear about FLASH developments relates to capacity. But bandwidth is becoming more critical as we stream more data around – particularly for applications where FLASH is replacing a hard drive. Yes, FLASH is already faster than a disk, but moving to solid-state storage – especially in growing data-intensive areas like cloud computing – will ramp up expectations on how much we can shove down that poor memory’s throat. Digital fois gras anyone?

At least this is how Cadence sees things happening (well, except for the fois gras part). They’ve just announced support for the higher-speed ONFi 3 interface standard, which revs up access to 400 MT/s –  twice what it used to be. In theory, anyway.

However, they also claim that most implementations of ONFi 3 only achieve 85-90% or so of that theoretical performance. Cadence claims that with their IP portfolio (PHY, controller, ECC), they can achieve 95% of that 400 MT/s.

They’re also touting their ECC – it’s becoming much more important at high densities for both probabilistic and sensing sensitivity reasons. This is especially true with cells that can carry more than one bit’s worth of information: you’re measuring fine gradations of trapped charge, increasing the risk of statistical errors.

Which brings me to my kvetch of the day… terminology. SLC = single-level cell. Your standard, garden-variety memory cell – on or off. One level; one bit; two values. Then there was multi-level cell, or MLC. As far as I was concerned, this was a generic term for anything more than one. “Multi” being rather, well, generic. But no – apparently in this language “multi” means two. Well, actually, that’s not even right. The number of levels in an MLC cell, by this definition, is 4 – there are 4 levels, equivalent to 2 bits’ worth of information.

And then there’s the confusing TLC – three- (or triple-) level cell. Which is doubly confusing since “three” should qualify as part of “multi” since it’s more than one. But it’s worse than that, since a TLC doesn’t have 3 levels – it has 8 levels, 3 bits’ worth of information. Call it a TBC perhaps. Or an ELC. Or an 8LC. TLC is just wrong. And defining “multi” as 2 (or 4) is just goofy.

OK, rant over. More info on Cadence’s announcement is available on their release

Channels

Semiconductor.

 
    submit to reddit  



Please add a comment

You must be logged in to leave a reply. Login »

Related Articles

FPGA-Prototyping Simplified

Cadence Rolls New Protium Platform

by Kevin Morris

System on Chip (SoC) design today is an incredibly complicated collaborative endeavor. By applying the label System to the chips we design, we enter a...

An Irregular Street Scene

Plasma-Therm Proposes Plasma Dicing

by Bryon Moyer

A silicon wafer will always be patterned with a perfect grid of rectangular dice. Its so obvious that you even have to think about...

chipKITs and JPEGs

IP in Space and Open Source Board Buildin

by Amelia Dalton

It's time to break out the sparklers, an arc welder or two, and your best space suit - Fish Fry is here to celebrate! We're...

Crossbar RRAM Tweaks Nonvolatile Memory

Unique Resistive Technology Set to Challenge NAND Flash

by Jim Turley

I gotta say, memory chips are boring.

And thats coming from a guy who lives and works in the chip business. Sure, I...

When Intel Buys Altera

Will FPGAs Take Over the Data Center?

by Kevin Morris

At the Gigaom Structure 2014 event last week, Intels Diane Bryant announced that Intel is integrating [Intels] industry-leading Xeon processor with a coherent FPGA...

Related Blog Posts

Moving Back to Software

by Bryon Moyer

TIs new substation collaboration allows a software solution to replace hardware the reverse of what typically happens as a market matures. Whats up...

Metal Oxide Resists Lower Roughness

by Bryon Moyer

Narrower lines mean less tolerance for roughness along the edges. Inpria says that means its time for a new kind of...


Login Required

In order to view this resource, you must log in to our site. Please sign in now.

If you don't already have an acount with us, registering is free and quick. Register now.

Sign In    Register