editor's blog
Subscribe Now

Power Hungry

A keynote at the recent MEMS Executive Congress by TI’s Ajith Amerasekera discussed, among other things, power and battery requirements for handling our increasingly digital, distributed world. The conclusion he came to – that there’s still lots that needs to be invented – isn’t particularly surprising, but some of the facts regarding how he got there caught my attention.

We talk about the cloud and the use of the internet to ship digital goods like movies as being an environmental boon – no nasty, soot-producing trucks rumbling around the countryside. Just nice, neat, clean bits traveling invisibly through the ether from their cloud to yours.

Well, if the cloud ever gets organized enough to secede from the Internet and become its own country, it will immediately register on the power meter: it would be the fifth largest energy consuming country behind the US, China, Russia, and Japan and just ahead of India, Germany, and Canada, which are more or less tied.

And that’s based on 2007 data.

And that DVD you have decided to forego in favor of digital streaming? It does have a bigger power footprint than the downloaded version, but not by nearly as much as you would think: only around 20% less.

The ways in which the energy is consumed are, of course, vastly different. When shipping by truck, it’s easiest to see the truck as the big power hog – but it’s actually the smallest slice of the stack. The big part is the actual DVD itself at about 70% of the overall power footprint. The paper sleeve is next, then the plastic case. Rounding things out are warehouse costs and, coming in last, the trucks. So the two most obvious consumers are the least significant.

For digital streaming, the big consumer is, of course, the server farm. Then internet routers, then home routers, and lastly, data storage. (And that’s assuming a simple path from the server to the home – clearly, the farther afield those bits have to roam en route, the more energy they require.) His point is partly that optimized streaming could cut that streaming footprint by over half. Those optimizations include sleeping, link-rate adaptation, rate adaptation, and dynamic voltage scaling.

For mobile – or perhaps better to say untethered devices (you can manually recharge a phone, but a remote wireless sensor: not so much) – he sees power consumption levels needing to go from 100s of µW today to around the 1 nW level for a 10-year device lifespan.

His major conclusion from all of this: lithium ions aren’t going to cut it; we need a new technology. They’ve taken us a long way from the NiCd and NiMH days, but they’re running out of big improvements. So something new is needed for the 2020s.

Energy harvesting has promise, of course, but the traditional sources we look to now range from 0.001 µW/cm3 for scavenging WiFi RF energy to around 100 mW/cm3 for using outdoor light. He says we need to look for non-traditional sources of energy, including biological and micro-fuel-cell approaches.

So as interesting as some of those data points are, it is fair to say that the conclusions aren’t news… we’ve got work to do.

Leave a Reply

featured blogs
Mar 29, 2024
By Mark Williams, Sr Software Engineering Group Director Translator: Masaru Yasukawa 差動アンプã¯ãÂ1ã¤ã®入力信å·ã§ã¯ãªãÂÂ2ã¤ã®入力信å·間ã®差ã«ゲインをéÂÂ...
Mar 26, 2024
Learn how GPU acceleration impacts digital chip design implementation, expanding beyond chip simulation to fulfill compute demands of the RTL-to-GDSII process.The post Can GPUs Accelerate Digital Design Implementation? appeared first on Chip Design....
Mar 21, 2024
The awesome thing about these machines is that you are limited only by your imagination, and I've got a GREAT imagination....

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured chalk talk

Secure Authentication ICs for Disposable and Accessory Ecosystems
Sponsored by Mouser Electronics and Microchip
Secure authentication for disposable and accessory ecosystems is a critical element for many embedded systems today. In this episode of Chalk Talk, Amelia Dalton and Xavier Bignalet from Microchip discuss the benefits of Microchip’s Trust Platform design suite and how it can provide the security you need for your next embedded design. They investigate the value of symmetric authentication and asymmetric authentication and the roles that parasitic power and package size play in these kinds of designs.
Jul 21, 2023
29,137 views