editor's blog
Subscribe Now

MEMS Caps that Push Both Ways

The many bands that cellphones must support, coupled with environmental changes that can have a dramatic effect on the effectiveness of a phone’s antenna, have made the concept of antenna “tuning” particularly relevant. We looked at WiSpry’s approach to this some time ago. The concept involves an array of capacitors that can be reconfigured in real time to change the characteristics of the antenna and improve reception.

Most such MEMS capacitor arrays consist of cantilevers – like diving boards – or bridges – basically, cantilevers supported on both ends. (Which… makes them not cantilevers… yes, I understand…) But there’s a new company, just on the heels of a funding round, that has proposed a different way to build the capacitor.

DelfMEMS (I was so expecting them to be associated with Delft, the Netherlands, but no… they’re French) points to stiction as a particular problem for these traditional structures. Stiction is the tendency of a variety of influences – atomic forces, residual gunks, etc. – to cause a micro- or nanoscale structure to stick when you don’t want it to. So, for instance, if you push a cantilever down until it touches a base surface, it may stick when you remove the force you used to push it down.

Some companies actually use this as a way of holding down the cantilever, but in general, the issue comes when trying to release it. Assuming you’re not intentionally using stiction as your hold-down mechanism, DelfMEMS says that the traditional approach to avoiding stiction issues when opening the contact is to rely on mechanical force sufficient to overcome the stiction. And this mechanical force is typically provided by using a really stiff beam structure, located relatively far from the contact surface. That way it’s pulling away hard.

The downside of that is that you need a very high voltage – on the order of 50-100 V – to bend the thing when you want to actuate it.

DelfMEMS has a different structure. Viewed from the side, you can think of it like a bridge, except that, instead of being anchored at the end of the beam, there are two pillars placed in from the ends, and the bridge rests on them. This means that the beam can flex both so that the middle bows down, with the ends raising up, and so that the middle bows up, with the ends flexing down. The key is that they put actuating electrodes both in the middle, to pull the middle down and make contact, and under the ends, to pull the ends down, which raises the middle and breaks the contact. In other words, you get electrical help in both directions. And that reduces the voltages needed to less than 20 V.

This appears to be the essence of what they bring to the table, although they talk about other details in a whitepaper on their website. You can find out more about them and their recent funding round in their release.

Leave a Reply

featured blogs
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Using the Vishay IHLE® to Mitigate Radiated EMI
Sponsored by Mouser Electronics and Vishay
EMI mitigation is an important design concern for a lot of different electronic systems designs. In this episode of Chalk Talk, Amelia Dalton and Tim Shafer from Vishay explore how Vishay’s IHLE power inductors can reduce radiated EMI. They also examine how the composition of these inductors can support the mitigation of EMI and how you can get started using Vishay’s IHLE® High Current Inductors in your next design.
Dec 4, 2023
19,278 views