editor's blog
Subscribe Now

IP Block Verification

If you design SoCs, then you use IP. Lots of it, probably. From different companies, some perhaps even from your own company.

And the good news is, it’s all perfectly documented – pins, registers, timing, everything. Right? So you know that just fitting it all together will give you a correct-by-construction design. Right?

Yeah… and then you wake up.

In fact, the RTL implementation may deviate from the spec, or there may be holes in the spec, or the black-box RTL may have invisible surprises. It’s enough to make you run back to the comfort of your pillow.

Jasper and Duolog, at the urging of ARM, have come together to try to solve some of this. The first key ingredient is a machine-friendly way of describing an IP block. And that would be IP-XACT. IP-XACT doesn’t describe the IP implementation; it’s simply (if “simple” can be used here) a specification of the metadata and the interface. Like a software function or object prototype. (To be clear, Jasper and Duolog didn’t create IP-XACT; it’s been around for a while, and they simply make use of it.)

Given spec’ed and implemented versions of an IP block, Duolog and Jasper can then confirm whether specs match RTL or black-box matches white-box. That’s the first of two tools that will be available.

The second will help assemble the IP blocks into a design and then verify that everything is connected properly. “How hard can that be?” you ask. Well, given that some connections may come and go over time or given various conditions (for instance, via multiplexing), and the fact that some IP can have hundreds (or more) of connections, it can actually get pretty complicated. The tools purport to handle these scenarios, including such timing details as latency.

This all got rolled out at DAC, so it’s available today. You can find out more in their release.

Leave a Reply

featured blogs
Mar 28, 2024
The difference between Olympic glory and missing out on the podium is often measured in mere fractions of a second, highlighting the pivotal role of timing in sports. But what's the chronometric secret to those photo finishes and record-breaking feats? In this comprehens...
Mar 26, 2024
Learn how GPU acceleration impacts digital chip design implementation, expanding beyond chip simulation to fulfill compute demands of the RTL-to-GDSII process.The post Can GPUs Accelerate Digital Design Implementation? appeared first on Chip Design....
Mar 21, 2024
The awesome thing about these machines is that you are limited only by your imagination, and I've got a GREAT imagination....

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured chalk talk

Extend Coin Cell Battery Life with Nexperia’s Battery Life Booster
Sponsored by Mouser Electronics and Nexperia
In this episode of Chalk Talk, Amelia Dalton and Tom Wolf from Nexperia examine how Nexperia’s Battery Life Booster ICs can not only extend coin cell battery life, but also increase the available power of these batteries and reduce battery overall waste. They also investigate the role that adaptive power optimization plays in these ICs and how you can get started using a Nexperia Battery Life Booster IC in your next design.  
Mar 22, 2024
908 views