editor's blog
Subscribe Now

Get Wreal

When analog design discussions turn to simulation, especially when they involve Cadence, one inevitably comes up against the unfortunately-named concept of the “wreal” type. I say “unfortunately” because, pronounced with standard English rules, it’s pronounced “real,” providing no audible distinction from the “real” type. So it’s typically pronounced “double-you-real.” (Or occasionally you’ll hear “wuh-real.”) Yeah, unfortunate.

It’s also difficult to find information on exactly what it is and the context driving its use. It’s easy to learn that it can make some simulation faster, but, somehow, from there you end up diving way down into the nitty gritty of differences between the Verilog-AMS version and Cadence’s version and specific problems being discussed in forums and… well… let’s just try to back up a bit. I was able to talk to Mladen Nizic, a Cadence engineering director, in an attempt to articulate a big-picture statement of the role of the wreal.

First some background. Analog and digital simulators fundamentally work differently. An analog simulator attempts to calculate the state or operating point of a complete circuit. It’s a static, holistic, matrix calculation that is then repeated over very small time increments in an attempt to model continuous time. At any given time, the voltage and current are known for any node.

By contrast, digital simulators model the flow of signals from stimulus to response, driven by events, and they assume the discrete time behavior afforded by a clock. There are no voltages or currents, only 1s and 0s. (And Xs.)

Wreal signals help to bridge the divide between pure analog simulation and full-chip analog/mixed-signal (AMS) simulation. This is necessary for two reasons: AMS simulation must account for the preponderance of digital content, and the size of these chips means that higher simulation performance is needed than would be remotely possible if you tried to simulate the entire chip at an analog level.

With a wreal signal, you can take a voltage or current (but not both) between modules of the full chip. It can operate in a signal-flow fashion, behaving more like a digital signal. This allows it to play nicely in the digital simulation paradigm.

Cadence has made some extensions to the standard wreal:

–          You can typecast signals to/from wreal

–          You can have arrays of wreals

–          You can have multiple drivers on a wreal signal (and the tool will resolve the correct voltage or current)

You still need to do your full analog simulation to make sure your analog module is working properly, but you can now integrate the analog block into your full-chip simulation to make sure that it plays nicely with everything else.

 

When discussions of analog simulation [B1] arise, especially when they involve Cadence, one inevitably comes up against the unfortunately-named concept of the “wreal” type. I say “unfortunately” because, pronounced with standard English rules, it’s pronounced “real,” providing no audible distinction from the “real” type. So it’s typically pronounced “double-you-real.” (Or occasionally you’ll hear “wuh-real.”) Yeah, unfortunate.

It’s also difficult to find information on exactly what it is and the context driving its use. It’s easy to learn that it can make some simulation faster, but, somehow, from there you end up diving way down into the nitty gritty of differences between the Verilog-AMS version and Cadence’s version and specific problems being discussed in forums and… well… let’s just try to back up a bit. I was able to talk to Mladen Nizic, a Cadence engineering director, in an attempt to articulate a big-picture statement of the role of the wreal.

First some background. Analog and digital simulators fundamentally work differently. An analog simulator attempts to calculate the state or operating point of a complete circuit. It’s a static, holistic, matrix calculation that is then repeated over very small time increments in an attempt to model continuous time. At any given time, the voltage and current are known for any node.

By contrast, digital simulators model the flow of signals from stimulus to response, driven by events, and they assume the discrete time behavior afforded by a clock. There are no voltages or currents, only 1s and 0s. (And Xs.)

Wreal signals help to bridge the divide between pure analog simulation and full-chip analog/mixed-signal (AMS) simulation. This is necessary for two reasons: AMS simulation must account for the preponderance of digital content, and the size of these chips means that higher simulation performance is needed than would be remotely possible if you tried to simulate the entire chip at an analog level.

With a wreal signal, you can take a voltage or current (but not both) between modules of the full chip. It can operate in a signal-flow fashion, behaving more like a digital signal. This allows it to play nicely in the digital simulation paradigm.

Cadence has made some extensions to the standard wreal:

          You can typecast signals to/from wreal

          You can have arrays of wreals

          You can have multiple drivers on a wreal signal (and the tool will resolve the correct voltage or current)

You still need to do your full analog simulation to make sure your analog module is working properly, but you can now integrate the analog block into your full-chip simulation to make sure that it plays nicely with everything else.


 [B1]Link to surrender article

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Industrial Internet of Things (IIoT)
Sponsored by Mouser Electronics and Eaton
In this episode of Chalk Talk, Amelia Dalton and Mohammad Mohiuddin from Eaton explore the components, communication protocols, and sensing solutions needed for today’s growing IIoT infrastructure. They take a closer look at how Eaton's circuit protection solutions, magnetics, capacitors and terminal blocks can help you ensure the success of your next industrial internet of things design.
Jun 14, 2023
35,213 views