editor's blog
Subscribe Now

Embedded in the Cloud

This is a special one that’s going out to my home boy Jim Turley, who has a special relationship with Cloud Computing. He has a way of poking holes in one of the current darling of technology that is kind of undeniably persuasive. He makes you want to shout, as he shouts, “Testify!” even for me, who has been somewhat more optimistic about the possibilities of the cloud – and I’ve even worked for a company with a cloud-computing model (who has since pulled out of the cloud). (And I always like the emperor-has-no-clothes shouters – when they’re right, or partly right, anyway…)

Most of our cloud discussions have had to do with design tools. You know, using the cloud for peak usage and such. Which, as Jim has pointed out, feels very much like a trip back to the 70s and 80s. We have also talked about content in the cloud. But here’s a new one, as tossed out in a Wind River keynote at this week’s Multicore DevCon in Santa Clara: distributing your embedded code over the cloud. No, not like sending it to people: literally distributed computing – part of your software on your system, part in the cloud running an RTOS.

Yeah, you saw that right: real time.

Here’s the crux of what makes this remotely feasible: latency has dropped dramatically. Actually, there are two kinds of latency. The first I’ll call spin-up latency, and that’s the time it takes to get a system going. Back when I was involved in this, it took a good five minutes or so to get a machine ready to run. That meant that, from a farm standpoint, in order to give users reasonable response, you always had to have an idle machine warmed up ready to allocate. Once it got allocated, then you needed to spin another one up. Waiting five minutes would be totally unacceptable to a user.

This spin-up time is apparently much lower these days; no machines need to idle in the background like trucks at a truck stop while the driver grabs a sloppy joe.

Then there’s simple communication latency during operation. And this has also gotten much better, apparently. This, aided by technologies like KVM (kernel-based virtual machine), is making it feasible, or potentially feasible in the not-too-distant future, to run real-time functions in the cloud. Seriously.

This seems, well, surprising, but, then again, there are lots of things I wouldn’t have believed possible that I now take for granted, so perhaps I’m just an old codger. The other thing, of course, is that you have to convince your customer that your system won’t have any issues with ¾ of its code running in the cloud. Would love to see the safety-critical folks approve that one!

I will be watching with riveted attention to see how this plays out.

Hey Jim, waddaya think? Have we finally found a use for the cloud that you like?

(Heck, not just Jim – what do the rest of you think?)

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Introducing QSPICE™ Analog & Mixed-Signal Simulator
Sponsored by Mouser Electronics and Qorvo
In this episode of Chalk Talk, Amelia Dalton and Mike Engelhardt from Qorvo investigate the benefits of QSPICE™ - Qorvo’s Analog & Mixed-Signal Simulator. They also explore how you can get started using this simulator, the supporting assets available for QSPICE, and why this free analog and mixed-signal simulator is a transformational tool for power designers.
Mar 5, 2024
5,749 views