editor's blog
Subscribe Now

CEVA’s Next-Gen Vision Processor

CEVA has introduced a new vision platform, which they’re calling the CEVA-XM4. We’ve looked at their prior platform, the MM3101, before; you could consider this the next stage. Almost literally.

CEVA describes vision processing as resembling a 3-stage pipeline. First come your basic vision processing steps to generate clean 3D data, which creates left and right images and a depth map. The next step is what’s typically called computational photography: using sophisticated algorithms to create higher resolution and other quality improvements than a given camera is capable of generating on its own.

Both of these were covered in the prior vision processor; the XM4 further enables the third stage, what they call “visual perception.” This means object identification and tracking, for instance, as well as algorithms for augmented reality and so-called natural user interfaces (NUI – “natural” being something of a dodgy concept, like “intuitive”). Depending on the application, all three stages can be implemented in a single XM4 core; if more juice is needed, then multiple cores can be instantiated.

CEVA-XM4_flow.jpg 

(Image courtesy CEVA)

From a camera standpoint, part of the idea here is that higher-level processing tends to be done in the cloud, which involves huge transfers of data from camera to cloud. Part of the intent of the XM4 is to beef up the camera so that much of that heavy lifting is done first in the camera, abstracting all that raw data and moving less up to the cloud.

But the XM4 isn’t just about still cameras; it’s also about automotive vision as well as incorporating vision into the IoT – video cameras and such whose purpose it is to identify specific artifacts to enable some kind of action to be taken. It could be a security camera or simply a home video camera that’s “always watching,” but films only when your kid is in the frame. (Which means it’s actually filming and processing, but then discarding if it doesn’t identify your child.)

CEVA-XM4_block-diagram.png 

(Image courtesy CEVA)

To some extent, this is just a beefy DSP. But there are a couple important steps they’ve taken for targeting vision. First is simply optimizing the instruction set. The second is to optimize how memory is managed. They illustrated a couple of examples.

In one case, they have built in the ability to perform scatter and gather in a single clock cycle. Most vector algorithms require that the memory to be processed be tidily arranged in adjacent cells; if the required cells are spread all over the place, then either you need to copy them to a scratchpad area to work on them, copying them back later, or you can’t vectorize the algorithm.

With a scatter-gather capability, they can handle this quickly, allowing vectorization of algorithms that would likely otherwise remain serial.

The other is what I think of as a windowing capability; they call it “2D processing.” Many vision algorithms involve a sliding window, with significant overlap between what’s contained in the window in one position and what’s contained after the window shifts one notch. They enable efficient reuse of the overlapping areas memory rather than requiring copies to scratch memory.

These capabilities largely come through pre-optimized library components; the designer then doesn’t have to think through the details of how they work; it’s already done for them (similarly to the SmartFrame feature we described in the past).

While these low-level processors can involve low-level programming, their Android Multimedia Platform allows programming at the Android level, with the framework connecting via the CPU to the vision processor.

You can learn more in their announcement.

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Using the Vishay IHLE® to Mitigate Radiated EMI
Sponsored by Mouser Electronics and Vishay
EMI mitigation is an important design concern for a lot of different electronic systems designs. In this episode of Chalk Talk, Amelia Dalton and Tim Shafer from Vishay explore how Vishay’s IHLE power inductors can reduce radiated EMI. They also examine how the composition of these inductors can support the mitigation of EMI and how you can get started using Vishay’s IHLE® High Current Inductors in your next design.
Dec 4, 2023
19,165 views