editor's blog
Subscribe Now

Better VIP Performance

As SoC designs have ballooned in size and scope, so has the effort required to verify them. A big part of what makes such large designs possible is the use of IP, especially for complex protocols. So that IP needs to play into the verification of the SoC.

But, while IP has raised the level of abstraction for design, it has lagged behind in verification. As Synopsys sees it, even just the complexity of design that’s now possible has driven up the verification burden tremendously due to what is now a scenario count twenty times higher than in the past.

Two of the biggest challenges are straightforward: the amount of time it takes to run all that verification and the ability to debug any issues uncovered during the run.

Performance is hampered first off by the sheer number of lines of VIP code to be run, which Synopsys puts at over 3 million. But making things worse is the fact that the various IP blocks may have verification models that use different languages or base classes, and therefore have to be stitched into the design with wrappers or gaskets. And those can kill performance.

From a debug standpoint, even though we have higher design abstraction, most debug tools operate at a low level so that all of that abstraction is lost.

Synopsys is addressing this with a couple major releases. First is what they call their Discovery VIP platform. The idea is that, with a new underlying architecture and all-SystemVerilog approach, all of the pieces can be stitched together without the need for any intervening adaptation bits. They support the three main verification methodologies, VMM, UVM, and OVM; compile-time switches let you choose which base classes to compile in.

They claim that they get a 4x verification performance benefit from this.

From a debug standpoint, they’ve also announced Protocol Analyzer, a high-level simulation results viewer that takes a verbose simulation log and presents the results in a manner that reflect the context and semantics of a specific piece of IP. So rather than just seeing network traffic as bits, for example, you can see them as packets and even track independent flows. They’ve announced that their tool will work with SpringSoft’s Verdi debugger as well.

You can find more details in the Discovery VIP and the SpringSoft Verdi collaboration releases…

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Nexperia Energy Harvesting Solutions
Sponsored by Mouser Electronics and Nexperia
Energy harvesting is a great way to ensure a sustainable future of electronics by eliminating batteries and e-waste. In this episode of Chalk Talk, Amelia Dalton and Rodrigo Mesquita from Nexperia explore the process of designing in energy harvesting and why Nexperia’s inductor-less PMICs are an energy harvesting game changer for wearable technology, sensor-based applications, and more!
May 9, 2023
40,693 views