editor's blog
Subscribe Now

An Acid Trip

When you think of a high-acid environment, what do you think of? That can of soda? Lemon juice? Your stomach? Battery acid? Well, to review, neutral pH is 7. Your stomach will have a pH of 1.5 to 3.5, presumably depending on how much soda or lemon juice or Thai-spicy tom yum gai you just had. Coca-Cola Classic is around 2.5. Lemon juice: 2.0. Battery acid: 1. It’s hard to imagine electronics functioning in a bath of any of those tongue ticklers.

But there’s an environment that’s even worse. One within which an electronic component must operate. And you might never expect it. In fact, many folks didn’t expect it. It can have a pH of 0.5 or less. It’s car exhaust. And it’s not all gaseous. It can make mincemeat of your chip in a couple months. Who knew…

Certainly not the many folks trying to build pressure sensors for that environment. Sensata has just announced a relative pressure sensor for this application – and even they didn’t realize this when they started.

There are actually a couple things that they’ve done that others have had trouble with. One is simply getting this to work in such an environment; the other is doing it with a single element – other folks apparently use two pressure sensing elements (and measure the difference between them).

The Sensata approach is a two-port sensor, with one sealed port on each side of a piezo-resistive element. Each port exposes the pressure of one of the environments to be compared, so the element is, by definition, providing the relative pressure difference. The element, which, of course, has a backside etch so the membrane is accessible to front and back, is mounted in a ceramic carrier.

Then there’s the bit about the acid. There are lots of things that can be attacked, most of which are on the logic that makes sense out of the raw pressure measurement. In other words, CMOS. Much of it can be protected by suitable passivation, but you still have to get the signals in and out, and that takes metal. And, no matter how much you protect everything else, that metal isn’t going to like lots of acid.

So rather than having that logic on the same chip as the element or an ASIC collocated with the element, they put the ASIC away from the element, outside of the corrosive environment. That minimizes the part that has to be robust and protects the delicate bits.

You can find more in their release

Leave a Reply

featured blogs
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

High Voltage Stackable Dual Phase Constant On Time Controllers - Microchip and Mouser
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Chris Romano from Microchip and Amelia Dalton discuss the what, where, and how of Microchip’s high voltage stackable dual phase constant on time controllers. They investigate the stacking capabilities of the MIC2132 controller, how these controllers compare with other solutions on the market, and how you can take advantage of these solutions in your next design.
May 22, 2023
38,419 views