editor's blog
Subscribe Now

Altera Partners with Intel for 14nm Tri-Gate FPGAs

Altera just announced that they’re partnering with Intel to produce FPGAs based on Intel’s 14nm Tri-Gate process.  This has the potential to give Altera a big lead in the node-after-next war with rival Xilinx.  Intel has a well-established leadership position in FinFET technology (which they call Tri-Gate) – a 3D transistor fabrication technique that has much lower power consumption and better performance than traditional planar CMOS transistors.  FinFETs give probably an extra process node worth of benefits to FPGAs, so a 14nm FinFET-based FPGA will probably be 2 process nodes better (in terms of performance and power consumption) than the 20nm planar devices that both Xilinx and Altera are already reportedly developing, and 3 process nodes better than the current state-of-the-art 28nm FPGAs both companies are producing with TSMC.

We talked with Altera CEO John Daane about the deal, and Daane says Altera will be exclusive with Intel among “Major FPGA vendors.” That means Xilinx will not be working with Intel 14nm Tri-Gate, but likely Achronix and/or Tabula will.  This leaves Xilinx without a known partner for Fin-FET FPGAs, although they are rumored to be working with TSMC on the technology.  However, Intel is believed to have a significant lead both in 3D transistors and in process geometry at this point, so this deal could be a major coup for Altera.

Leave a Reply

featured blogs
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
Analog Behavioral Modeling involves creating models that mimic a desired external circuit behavior at a block level rather than simply reproducing individual transistor characteristics. One of the significant benefits of using models is that they reduce the simulation time. V...
Apr 16, 2024
Learn what IR Drop is, explore the chip design tools and techniques involved in power network analysis, and see how it accelerates the IC design flow.The post Leveraging Early Power Network Analysis to Accelerate Chip Design appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadenceā€™s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

ROHM Automotive Intelligent Power Device (IPD)
Modern automotive applications require a variety of circuit protections and functions to safeguard against short circuit conditions. In this episode of Chalk Talk, Amelia Dalton and Nick Ikuta from ROHM Semiconductor investigate the details of ROHMā€™s Automotive Intelligent Power Device, the role that ??adjustable OCP circuit and adjustable OCP mask time plays in this solution, and the benefits that ROHMā€™s Automotive Intelligent Power Device can bring to your next design.
Feb 1, 2024
10,630 views