editor's blog
Subscribe Now

12-Way MEMS Switch

MEMS is entering yet another space traditionally done with electronics: RF switching. The switching comes as a result of the ridiculous number of bands (currently 26, by DelfMEMS’s count) that vie for love and attention. Transistors have typically been used for these switches.

That’s fine when the transistor is on, but when it’s off, well, it leaks and behaves non-linearly – especially at high frequencies.

So DelfMEMS (we looked at some cap arrays of theirs before) thought that a micromechanical switch would be better. Instead of an electrical channel created in a FET, they use a membrane that, depending on its position, opens or closes a mechanical connection. So when it’s open, it’s open – no leaking.

And what size switch to make? DelfMEMS says that, in particular in Asia, 12 ways is typical – it’s one of the first questions they get. The high and low bands are typically split first, after which the 12-way switch takes care of the rest (yeah, I know… 26/2>12… details…). Technically this is a single-pole, 12-throw switch (one circuit with 12 choices).

SP12T-Test-Board_ret.jpg 

(Image courtesy DelfMEMS)

For a digital guy like me, this looks a lot like a demux. Or a mux, if you turn it around. Except that, with standard digital logic, you can’t simply turn a mux around and use it as a demux. But this isn’t digital logic; these are switches, and yes, you can turn them around and use them either to mux 12 signals into one or to take one signal and send it one of 12 ways.

You can find more info in their announcement.

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Enabling IoT with DECT NR+, the Non-Cellular 5G Standard
In the ever-expanding IoT market, there is a growing need for private, low cost networks. In this episode of Chalk Talk, Amelia Dalton and Heidi Sollie from Nordic Semiconductor explore the details of DECT NR+, the world’s first non-cellular 5G technology standard. They investigate how this self-healing, decentralized, autonomous mesh network can help solve a variety of IoT connectivity issues and how Nordic is helping designers take advantage of DECT NR+ with their nRF91 System-in-Package family.
Aug 17, 2023
29,506 views