feature article archive
Subscribe Now

More and Moore

Price, Performance, and Power – the three Ps of Moore’s Law — have fueled four decades of technological fury. Each new process node brought us more gates per square meter of silicon, reducing price. Each shrink of the gate also brought us faster toggle rates, giving higher performance, and each narrowing also gave us the opportunity to operate at lower supply voltages, giving less dynamic power consumption. It seemed as if everything would improve exponentially forever.

Of course, nothing is free. There has always been another exponential curve at work as well – that … Read More → "More and Moore"

Need More Performance?

Extracting higher performance from today’s FPGA-based systems involves much more than just cranking up the clock rate. Typically, one must achieve a delicate balance between a complex set of performance requirements – I/O bandwidth, fabric logic, memory bandwidth, DSP and/or embedded processing performance – and critical constraints such as power restrictions, signal integrity and cost budgets. Moore’s Law notwithstanding, to maximize performance while maintaining this balance, the FPGA designer must look beyond the clock frequency altogether.

Overcoming Performance Bottlenecks

Each new generation of process technology brings with … Read More → "Need More Performance?"

Looking Inside

As FPGAs grow faster and more powerful, our natural inclination is to scrape more and more functionality off our boards and cram it into our new, bigger FPGAs. It’s a strategy that makes good sense. Not only do we save board real estate, increase reliability, and cut bill of materials (BOM) cost, but we also usually improve our performance and, paradoxically, reduce our FPGA’s I/O requirements. In addition, we put more of our circuit into the “soft” arena, allowing future upgrades, patches, and variants to be made with only an FPGA bitstream … Read More → "Looking Inside"

Supercomputing To Go

Some embedded applications are much tougher, however. There are cases when we need to deliver copious amounts of computing power while remaining off the grid. Last week, at Supercomputing 2005 in Seattle, there was ample evidence of just such compute power gone mad. Gigantic racks of powerful processors pumped piles of data through blazing fast networks and onto enormous storage farms. The feel of the place was about as far from “embedded” as you can get, unless your idea of embedding somehow involves giant air-conditioners and 3-phase power.

Behind the huge storage clouds, teraflop racks, and … Read More → "Supercomputing To Go"

Saving Supercomputing with FPGAs

Massive racks of parallel processing Pentiums, Opterons, and Itaniums wasted watts at an unprecedented pace last week on the show floor at Supercomputing 2005 in Seattle. Teraflops, terabytes, and terrifying network bandwidths bombarded booth attendees looking for the last word in maximizing computational throughput. Convention center air conditioning worked overtime purging the byproducts of billions of bit manipulations per second as breaker boxes burst at the seams, straining to deliver adequate amperage to simultaneously power and cool what was probably the world’s largest temporary installation of high-performance computing equipment.

Meanwhile, the term “FPGA& … Read More → "Saving Supercomputing with FPGAs"

Changing Waves

For over four decades, progress in processing power has ridden the crest of a massive breaker called Moore’s Law. We needed only to position our processing boards along the line of travel at the right time, and our software was continuously accelerated with almost no additional intervention from us. In fact, from a performance perspective, software technology itself has often gone backward – squandering seemingly abundant processing resources in exchange for faster development times and higher levels of programming abstraction.

Today, however, Moore’s Law may be finally washing up. Even though physics may … Read More → "Changing Waves"

Assemble All Ye IP

There are two levels of DSP design. First, there’s the conceptual level, where hard-core algorithm development rules the day. Your big concern here is the numerical correctness of your algorithm, but there’s no timing information or data typing to fret about. This is the comfort zone for the traditional DSP designer. You’re dealing with a problem from a purely mathematical point of view, using a procedural language like “M” in the MathWorks’ MATLAB, which is suited for un-timed algorithms with mathematically friendly data types to fine-tune your formula.

Read More → "Assemble All Ye IP"

The Case for Hardware/Software Co-Verification

Large devices allow you to stuff a whole system into the FPGA, but debugging these complex systems with limited visibility – and a one-day turnaround for synthesis plus place and route – can consume weeks of your precious time.

Hardware/software co-verification has been successfully applied to complex ASIC designs for years. Now available to FPGA designers, this technology brings together the debug productivity of both a logic simulator and a software debugger. Co-verification enables you to remove synthesis and place and route from the design iteration loop, while yielding performance gains 1,000 times faster than logic simulation.Read More → "The Case for Hardware/Software Co-Verification"

Chillin’ with QuickLogic

Deep in the system designer’s psyche, the traditional truths of FPGA are fused with non-volatile, metal-to-metal connections. FPGAs are expensive. FPGAs consume too much power. FPGAs and battery-powered consumer devices are complete non-starters.

QuickLogic should guard their secret carefully – the one about their new PolarPro being an FPGA family. When designers of portable media players are looking for a device that can significantly increase the battery life of their next-generation units, FPGAs will likely be the last place they think to look. After all, FPGAs burn power like toasters. FPGAs are expensive. Nobody in his … Read More → "Chillin’ with QuickLogic"

featured blogs
Oct 17, 2018
Samtec offers one of the industry'€™s largest and most flexible lines of two-piece, pin-and-socket board-stacking interconnects. To say it another way, we have more ways to stack two or more boards together than any other connector company.  Also, you can specify a cust...
Oct 17, 2018
This week it is CDNLive Israel. But last week it was Jasper User Group (JUG). At it happens, Jasper was one of the early companies to sign up with SemiWiki when we started it, so I've been going to Jasper User Group for longer than either I've been at Cadence or Jas...
Oct 16, 2018
  IC Insights has just published the September Update to The 2018 McClean Report, and one figure (reproduced below) puts yet another nail into the coffin for poor old Moore'€™s Law. Now please take care. There'€™s a vertical line between the 200mm wafers on the left ...
Oct 12, 2018
At the end of the day, your products are only as good as their in-the-field performance. It doesn'€™t matter how well they performed in a controlled environment....