feature article
Subscribe Now

Little Conexant Makes a Big Noise

Telecom Company Turns its Attention to Games, Cars, and Tablets

Conexant is one of those companies that used to be big. Like Polaroid, Pan Am, Commodore, Westinghouse, or Life magazine, it carries a once-proud brand name that belies its current station. The company was spun off from mighty Rockwell International 15 years ago during the height of the networking boom, and it has steadily decimated itself since. A string of divestitures capped by a complete Chapter 11 reorganization two years ago have seen the one-time telecom darling reduced to a private firm with about $120 million in total sales.

That’s not to say that Conexant isn’t successful. And with over 300 employees drawing a paycheck, Conexant is no hole-in-the-wall outfit. But it’s not… y’know… a big deal.

Unless you’re making consumer audio gear. Then it’s a company you’d probably like to get to know. Because, for all of its baggage, Conexant is actually doing a pretty good job of making chips and software for the MP3 crowd. Or people who drive cars. Or play games. Let me ’splain.

Conexant has two basic business units. One half is kinda, sorta, the old Conexant that still makes chips for fax modems and photocopiers. The other half is all new stuff, with a focus on audio processing. And that group is busy, busy, busy, building the kind of stuff you see at CES, Best Buy, and in Sharper Image catalogs.

Case in point: the company’s 207xx, 208xx, and 209xx chips are preprocessing devices for voice-activated gizmos. What does that mean? They filter and enhance the raw audio from microphones so that a downstream processor can accurately recognize voice commands. The Conexant chips don’t do voice recognition on their own, but they complement new or existing voice-activation systems.

A lot of the magic in voice recognition is simply recognizing what’s actually a voice and what’s background noise. That’s particularly tricky when the background noise is other voices. How do you make Siri or Cortana or Google Now pick out your voice in the middle of a crowded bar? It’s the semiconductor equivalent of the “cocktail party effect.”

That’s not a big problem with cell phones because we tend to hold them close to our faces, essentially whispering in Siri’s ear. But what about cars with voice-activated GPS navigation, radio tuning, or infotainment centers? They’re notoriously unreliable, largely because cars are noisy inside. Automakers get around that by “beam forming,” or aiming multiple microphones at the driver’s (and presumed speaker’s) head. With multiple mics and a little phase-shifting software, you can generally separate the driver’s voice from that of the passenger – or the state trooper leaning in the window. It’s not perfect, but it’s good enough for Lexus.

Conexant banishes all that with its “far field” voice-input preprocessors. Using just a single standard microphone, it can effectively wipe away a lot of background noise, electrical hum, secondary voices, industrial clatter, and whatnot, leaving a relatively clear field for the voice-recognition system. The solution is part hardware and part software, using a code base it calls AudioSmart.

You can also get just the AudioSmart software for your own system. There’s a new version out that runs on Linux, alongside the existing Windows and Android versions. The latter two are more fully featured, while the Linux port is somewhat streamlined for the types of lighter-weight systems that Conexant expects Linux users to build.

Over on the ever-growing gamer front, Conexant has tweaked its voice-processing technology for headsets. The idea here is to equip gamer headsets with a kind of reverse echo cancellation. With two microphones in the headset, one for voice pickup and one to capture ambient sound, the headset itself will cancel out extraneous noises, leaving just the clear tones of the wearer’s voice. Given how much money gamers will spend on a better high-resolution mouse, I imagine noise-cancelling headsets will be a big hit. Now, if we could only get them for office workers. 

Leave a Reply

featured blogs
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....
Apr 18, 2024
Analog Behavioral Modeling involves creating models that mimic a desired external circuit behavior at a block level rather than simply reproducing individual transistor characteristics. One of the significant benefits of using models is that they reduce the simulation time. V...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Extend Coin Cell Battery Life with Nexperia’s Battery Life Booster
Sponsored by Mouser Electronics and Nexperia
In this episode of Chalk Talk, Amelia Dalton and Tom Wolf from Nexperia examine how Nexperia’s Battery Life Booster ICs can not only extend coin cell battery life, but also increase the available power of these batteries and reduce battery overall waste. They also investigate the role that adaptive power optimization plays in these ICs and how you can get started using a Nexperia Battery Life Booster IC in your next design.  
Mar 22, 2024
3,842 views