feature article
Subscribe Now

The Chinese Are Coming, the Chinese Are Coming!

“Made in China” usually conjures up images of cheap Wal-Mart merchandise on the bargain rack. On the other hand, Chinese engineers have constructed some pretty amazing things over the ages. Chinese art, architecture, and engineering are on par with anyone else’s.

A case in point is the oddly named Godson microprocessor chip. The newest version is a 64-bit beast running at 1 GHz or so, fabricated in a leading-edge 28nm process technology (not Chinese). Like all previous Godson chips, it’s MIPS-compatible. Unlike previous Godson chips, this time it’s legal.

Godson (the name roughly translates as “the dog’s leftovers,” and it makes a lot more sense in Chinese culture) is being developed by the Chinese Academy of Sciences in Beijing. It’s part of a larger government-backed effort to stimulate home-grown technology. For now, Godson chips are used mostly in domestic Chinese computers. Later on, they hope to spin it off as an independent commercial venture, selling microprocessors on the open market.

Godson processors have been MIPS-compatible since the first one debuted in 2002. They were initially “MIPS-like” but not entirely binary compatible, since the Academy didn’t have a license from MIPS Technologies. Now that the group is fully licensed-up, they can design genuine MIPS processors that run most any MIPS-based code. The earlier Godson-1 and Godson-2 generations were pretty advanced for their time, and they found homes in Linux PCs across China. The new generation of Godson chips, predictably named Godson-3, is even more impressive.

In addition to being entirely MIPS-compatible, they’re also x86-compatible—sort of. Godson-3 includes about 200 instructions in addition to the standard MIPS ISA that help it accelerate x86 binary translation. The idea is not to duplicate all the features of an Intel Xeon or an AMD Athlon, but just to boost translation enough that running x86 code isn’t a miserable experience.

The chip does binary translation on the fly, somewhat like Transmeta’s Crusoe and Efficeon chips used to do (R.I.P.). Transmeta was trying to actually replace x86 processors; the Chinese just want to assist the MIPS processor core. Godson-3 won’t run x86 code nearly as fast as native MIPS code, but it’s nice to know that you could run x86 binaries if you had to.

And that’s just one of Godson-3’s many coprocessors. The chip also includes multiple 256-bit vector-processing units, PCI and PCI Express controllers, a DDR3 memory controller, HyperTransport interface, a programmable DMA controller, and more. Godson-3 comes in three flavors: the 3A has four 64-bit MIPS CPU cores, 3B has eight cores, and 3C has sixteen cores. All three versions include all the coprocessors and run at a swift 1.0 GHz.

The HyperTransport interface is particularly interesting if you’re building a massively multiprocessor system. It allows you to connect each Godson-3 chip to four neighbors in a north, south, east, west kind of mesh. They won’t automatically communicate with each other—that’s still the programmer’s task—but at least the hardware is in place.

Godson Lite

For embedded designers, there’s the Godson-2H, a watered-down version for Linux PCs and similar devices. The 2H is an all-in-one chip, with just a single Godson CPU core but with a graphics controller, Ethernet, UARTs, AC97 audio, SATA, and USB ports built in. As such, it’s a bit like AMD’s upcoming “Ontario” chip, integrating the processor, the graphics, and most of the in/out stuff you need for a complete system. Just add memory and software.

Of course, Ontario will have the advantage (if you see it that way) of running PC software, whereas Godson-2H is a MIPS machine. That’s fine for Linux or just about any other operating system, but it pretty much leaves out the Windows market. Like its big brothers, Godson-2H has the extensive x86 extensions, so x86 software isn’t out of the question. It’ll just be slow.

Aiming for the Stars

Meanwhile, back at the high end, the Chinese Academy of Sciences’ ultimate goal is to create the world’s fastest computer with a machine based on clusters of Godson-3C chips. It’ll have some stiff competition: IBM has held the world’s-fastest-computer record for many years with its Deep Blue: the Blue Gene/L machines, among others. Current bragging rights belong to Cray’s Jaguar-XT5-HE, based on AMD Operation chips. There are currently 24 Chinese systems in the Top 500 List (the same number that Germany has), but none are based on Godson chips—so far.

Godson’s rapid progress over the past few years suggests they might have a shot. Godson-3C is certainly an ambitious design, and it should deliver impressive performance when it starts production, which is scheduled for 2012. In the meantime, hordes of Chinese schoolchildren can look forward to their own Godson-based Linux PC. That wouldn’t be too different than the Apple II many of us learned on, and look how that turned out. 

Leave a Reply

featured blogs
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Addressing the Challenges of Low-Latency, High-Performance Wi-Fi
In this episode of Chalk Talk, Amelia Dalton, Andrew Hart from Infineon, and Andy Ross from Laird Connectivity examine the benefits of Wi-Fi 6 and 6E, why IIoT designs are perfectly suited for Wi-Fi 6 and 6E, and how Wi-Fi 6 and 6E will bring Wi-Fi connectivity to a broad range of new applications.
Nov 17, 2023
20,973 views