feature article
Subscribe Now

The Great Divide: Why Next-Generation FPGA Designs will be Hierarchical and Team-Based

As field-programmable gate arrays (FPGAs) have grown in capacity, complexity and performance, their associated design and verification tools, infrastructures and methodologies have struggled to keep up. Today’s FPGAs may contain the equivalent of millions of logic gates and run hundreds of thousands of lines of embedded software. Such designs may involve multiple hardware design teams, software development teams and verification teams located around the globe. In order to address designs of this size and complexity it is necessary to employ what is known as hierarchical team-based design.

This paper first considers the evolution of FPGAs and FPGA design. Next, the concepts of top-down and divide-and-conquer design flows are introduced. Also discussed are considerations and capabilities required to support true hierarchical team-based design along with content management and design reuse considerations.

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Power High-Performance Applications with Renesas RA8 Series MCUs
Sponsored by Mouser Electronics and Renesas
In this episode of Chalk Talk, Amelia Dalton and Kavita Char from Renesas explore the first 32-bit MCUs based on the new Arm® Cortex® -M85 core. They investigate how these new MCUs bridge the gap between MCUs and MPUs, the advanced security features included in this new MCU portfolio, and how you can get started using the Renesas high performance RA8 series in your next design. 
Jan 9, 2024
15,043 views