industry news
Subscribe Now

Printed Circuit Boards Offer Universal Supercapacitor Balancing with Ultra-Low Power

SUNNYVALE, Calif. – Nov. 17, 2016 –Advanced Linear Devices Inc. (ALD), a design innovation leader in analog semiconductors, today announces the immediate availability of universal printed circuit boards(PCB) designed to automatically balance leakage currents and manages over voltage enabling ultra-low power usage in supercapacitors used in a series stack. The board uses ALD’s SAB MOSFETs to balance the leakage current in each individual supercapacitor cells, even for cell of 3000 Farad (F) or more.

The PCB is designed to allow system engineers to test, evaluate, prototype or use in production products. Supercapacitor balancing is required by cell manufacturers when used in stacks of two or more . Balancing manages over-voltage limits, a main cause of product failures. Additionally, the SAB MOSFET’S PCB balancing technology reduces leakage current enabling ultralow power operation. Each device in the ALD8100XX/ALD9100XX SAB MOSFET provides a superior circuit design alternative to passive or active balancing methods by offering automatic active leakage current regulation and space and cost-saving alternative to op-amp based balancing schemes.

Engineering testing shows the ALD method of cell balancing extends the product life of stacked caps. Industries such as energy harvesting, transportation, back-up power and automation applications are beginning to include supercapacitors.

ALD offers a family of printed circuit boards: SABMB16/SABMB810025/SABMB910025 are universal application boards. The first two versions in the series are SABMB810025 and SABMB910025. These are 2.5-volt universal boards allowing designers to select either the ALD810025 SAB MOSFETs or the ALD910025 SAB MOSFETs installed. A third version is unpopulated to allow engineers to select the appropriate SAB MOSFETs based on their specific design specifications. All three options are delivered ready to use, designed for compact, economical and effective balancing any size supercapacitors with little or no power dissipation. . No user circuit design or hardware engineering is necessary.  

The charging or discharging of supercapacitor currents pass through the supercapacitors themselves, but do not pass through the SABMB16 boards or SAB MOSFETs mounted on the PCB board. In many cases, the total additional leakage current contributed by the PCB is approximately zero, or no more than a small percentage of the highest supercapacitor cell leakage current in the stack.  This contrasts with other methods of balancing where the additional power dissipation used by the balancing circuitry far exceeds the supercapacitor power burn caused by its own leakage current.

“The rapid pace of innovation for new supercapacitor applications is accelerating especially for those using two or more cells in a series stack as high-current energy storage devices for industrial pioneering systems,” said Robert Chao, President and CEO of Advanced Linear Devices Inc. “These boards are designed to give developers a superior way to balancing supercapacitors, protecting them from over-voltage and over-current situation, saving energy, extending their useful life and preventing pre-mature field failures.” 

SABMB16 is designed for ease of use as a plug-and play PCB for supercapacitors of 0.1 farad (F) to 3000F and beyond. The average additional power dissipation due to DC leakage of the supercapacitor is zero, which makes this method of supercapacitor balancing highly energy efficient and well-suited for low loss energy harvesting and long-life battery operated applications.

Pricing and Availability

Products can be ordered directly from ALD or ordered from DigiKey or Mouser.  Quantities start at $33.34 for single unit.

About Advanced Linear Devices, Inc. Advanced Linear Devices Inc. is a design innovation leader in analog semiconductors specializing in the development and manufacture of precision CMOS linear integrated circuits, including analog switches, A/D converters and chipsets, voltage comparators, operational amplifiers, energy harvesting systems, analog timers, and conventional and precision EPAD MOSFET transistors.

Leave a Reply

featured blogs
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Nexperia Energy Harvesting Solutions
Sponsored by Mouser Electronics and Nexperia
Energy harvesting is a great way to ensure a sustainable future of electronics by eliminating batteries and e-waste. In this episode of Chalk Talk, Amelia Dalton and Rodrigo Mesquita from Nexperia explore the process of designing in energy harvesting and why Nexperia’s inductor-less PMICs are an energy harvesting game changer for wearable technology, sensor-based applications, and more!
May 9, 2023
40,693 views