industry news
Subscribe Now

GLOBALFOUNDRIES to Deliver Industry’s Leading-Performance Offering of 7nm FinFET Technology

Santa Clara, Calif., September 15, 2016 – GLOBALFOUNDRIES today announced plans to deliver a new leading-edge 7nm FinFET semiconductor technology that will offer the ultimate in performance for the next era of computing applications. This technology provides more processing power for data centers, networking, premium mobile processors, and deep learning applications.

GLOBALFOUNDRIES’ new 7nm FinFET technology is expected to deliver more than twice the logic density and a 30 percent performance boost compared to today’s 16/14nm foundry FinFET offerings. The platform is based on an industry-standard FinFET transistor architecture and optical lithography, with EUV compatibility at key levels. This approach will accelerate the production ramp through significant re-use of tools and processes from the company’s 14nm FinFET technology, which is currently in volume production at its Fab 8 campus in Saratoga County, N.Y. GLOBALFOUNDRIES plans to make an additional mutli-billion dollar investment in Fab 8 to enable development and production for 7nm FinFET. 

“The industry is converging on 7nm FinFET as the next long-lived node, which represents a unique opportunity for GLOBALFOUNDRIES to compete at the leading edge,” said GLOBALFOUNDRIES CEO Sanjay Jha. “We are well positioned to deliver a differentiated 7nm FinFET technology by tapping our years of experience manufacturing high-performance chips, the talent and know-how of our former IBM Microelectronics colleagues and the world-class R&D pipeline from our research alliance. No other foundry can match this legacy of manufacturing high-performance chips.” 

“GLOBALFOUNDRIES made a bold decision to jump directly from 14nm to 7nm–a decision that is now supported by several leading semiconductor companies as they see only marginal performance and power benefits for the high cost of the 10nm process node,” said Jim McGregor, founder and principal analyst at TIRIAS Research. “Much like the 28nm and 16/14nm process nodes, 7nm appears to be the next major process node that will be widely leveraged by the entire semiconductor industry for at least the next decade.”

“Leading-edge technologies like GLOBALFOUNDRIES 7nm FinFET are an important part of how we deliver our long-term roadmap of computing and graphics products that are capable of powering the next generation of computing experiences,” said Dr. Lisa Su, president and CEO, AMD. “We look forward to continuing our close collaboration with GLOBALFOUNDRIES as they extend the solid execution and technology foundation they are building at 14nm to deploy high-performance, low-power 7nm technology in the coming years.” 

“IBM is committed to pushing the limits of semiconductor technology as part of its aggressive long term research agenda,” said Arvind Krishna, senior vice president and director of IBM Research. “IBM Research continues to collaborate with GLOBALFOUNDRIES in developing new ideas, new skills and new technologies that will help accelerate our joint research in 7nm technology and beyond.”

GLOBALFOUNDRIES will deliver a comprehensive and competitive IP library, co-optimized with process development. To enable customers to accelerate adoption of 7nm FinFET technology, GLOBALFOUNDRIES has expanded its strategic partnership with INVECAS beyond 14LPP and FDX™ processes to now include foundry IP development for 7nm process technologies. This will provide customers with a strong foundation to build early designs that meet their performance, power and area requirements. 

“INVECAS specializes in providing unrivaled IP solutions, ASIC and design services to GLOBALFOUNDRIES’ customers that span the wide-range of GLOBALFOUNDRIES’ leading edge FinFET and FDX processes,” said Dasaradha Gude, CEO, INVECAS. “Our strategic partnership with GLOBALFOUNDRIES combined with our tailor-made foundry IP model allows us to develop a 7nm FinFET process foundation IP that meets the challenging performance requirements of 7nm customers’ leading-edge applications.” 

Building on the success of its 14LPP technology platform, GLOBALFOUNDRIES’ 7nm FinFET technology is positioned to enable next-generation computing applications that demand ultra-high performance, from high-end mobile SoCs to processors for cloud servers and networking infrastructure. The company’s high-performance offerings are complemented by its 22FDXTM and 12FDXTM technologies, which have been developed to meet the ultra-low-power requirements of the next generation of intelligent connected devices, from mobile computing and 5G connectivity to artificial intelligence and autonomous vehicles.

GLOBALFOUNDRIES’ 7nm FinFET technology will be supported by a full platform of foundation and complex intellectual property (IP), including an application-specific integrated circuit (ASIC) offering. Test chips with IP from lead customers have already started running in Fab 8. The technology is expected to be ready for customer product design starts in the second half of 2017, with ramp to risk production in early 2018.

ABOUT GLOBALFOUNDRIES

GLOBALFOUNDRIES is the world’s first full-service semiconductor foundry with a truly global footprint. Launched in March 2009, the company has quickly achieved scale as one of the largest foundries in the world, providing a unique combination of advanced technology and manufacturing to more than 250 customers. With operations in Singapore, Germany and the United States, GLOBALFOUNDRIES is the only foundry that offers the flexibility and security of manufacturing centers spanning three continents. The company’s 300mm fabs and 200mm fabs provide the full range of process technologies from mainstream to the leading edge. This global manufacturing footprint is supported by major facilities for research, development and design enablement located near hubs of semiconductor activity in the United States, Europe and Asia. GLOBALFOUNDRIES is owned by Mubadala Development Company. For more information, visit http://www.globalfoundries.com.

Leave a Reply

featured blogs
Mar 27, 2024
The current state of PCB design is in the middle of a trifecta; there's an evolution, a revolution, and an exodus. There are better tools and material changes, there's the addition of artificial intelligence and machine learning (AI/ML), but at the same time, people are leavi...
Mar 26, 2024
Learn how GPU acceleration impacts digital chip design implementation, expanding beyond chip simulation to fulfill compute demands of the RTL-to-GDSII process.The post Can GPUs Accelerate Digital Design Implementation? appeared first on Chip Design....
Mar 21, 2024
The awesome thing about these machines is that you are limited only by your imagination, and I've got a GREAT imagination....

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured chalk talk

GaN Solutions Featuring EcoGaN™ and Nano Pulse Control
In this episode of Chalk Talk, Amelia Dalton and Kengo Ohmori from ROHM Semiconductor examine the details and benefits of ROHM Semiconductor’s new lineup of EcoGaN™ Power Stage ICs that can reduce the component count by 99% and the power loss of your next design by 55%. They also investigate ROHM’s Ultra-High-Speed Control IC Technology called Nano Pulse Control that maximizes the performance of GaN devices.
Oct 9, 2023
22,369 views