industry news
Subscribe Now

EnSilica launches Kalman Filter acceleration IP core for advanced driver assistance systems (ADAS)

  • Supports both classical and extended Kalman filtering
  • Conforms to process guidelines for ISO26262 functional safety requirements
  • Releases valuable CPU resources from computationally demanding processing tasks

Wokingham, UK – March 22, 2016.  EnSilica, a leading independent provider of semiconductor solutions and IP, has launched a Kalman Filter acceleration IP core for use in situational awareness radar sensors for advanced driver assistance systems (ADAS), such as electronic stability control systems, pre-crash impact mitigation, blind spot detection, lane departure detection, and self-parking. The Kalman Filter acceleration IP core, which is part of EnSilica’s emerging automotive IP portfolio that also includes pipelined FFT and Constant False Alarm Rate (CFAR) cores, provides an estimated speed improvement over software-only solutions of up to 10x.

Kalman filtering is used in sensor-based ADAS as part of the radar tracker in order to smooth out position and velocity measurements obtained from the radar sensors and front-end DSP unit. The development of EnSilica’s Kalman Filter acceleration IP core follows the guidelines necessary for integration with devices adhering to the ISO 26262 functional safety standard for road vehicles. It supports both classical Kalman filtering (KF) and extended Kalman filtering (EKF), the latter being applicable when there is a non-linear relationship between the target’s Kalman state and the radar measurements.

The compact, low gate-count architecture of EnSilica’s Kalman Filter acceleration IP core enables the computationally intensive matrix operations involved in Kalman filtering to be cost-effectively offloaded from the CPU. It operates on Range (distance), Doppler (velocity) and Azimuth (positional) measurements and applies Kalman filtering in order to predict the target’s position in the next time interval. It combines the radar measurements with a dynamic motion model for enhancing the target position and velocity estimates with forward prediction, allowing false alarm measurements to be discarded. The Kalman Filter acceleration IP core also provides a generic algorithm framework for fusing measurements from different sensors into a single target track.  

For a typical automotive radar system, EnSilica’s Kalman Filter acceleration IP core can provide a state update computation in about 10µs. This enables a large number of target tracks to be maintained at any given time, as this level of processing latency is very short compared to a usual radar measurement cycle, which is in the order of a few milliseconds. The core undertakes five main computational steps – setting the initial values, prediction of the state and error co-variance, computation of the Kalman gain, computation of the estimate and computation of the error co-variance – using floating point arithmetic in order to maintain numerical stability and provide identical results to a software implementation. RAM blocks of typically 8Kbits, depending on the matrix dimensions, are used to hold the computational matrices.

“Kalman Filter tracking is essential to radar-based advanced driver assistance systems as well as drones, UAV and UGV requiring fast and responsive situational awareness using multiple sensors,” said Ian Lankshear, CEO of EnSilica. “Integrating the EnSilica Kalman Filter acceleration IP core in the front-end DSP unit for the computationally demanding processing tasks of Kalman filtering provides a cost-effective ASIC or FPGA solution for enhancing overall system performance and releasing valuable CPU resources.”

About EnSilica

EnSilica was founded in 2001 and has a strong track record of success in delivering ASIC and FPGA based solutions to semiconductor companies and OEMs worldwide. The company is headquartered in the UK and has subsidiaries in India and the USA. The company is a specialist in low-power ASIC design and complex FPGA-based embedded systems. In addition to supplying IP and turnkey ASIC/FPGA development and supply, EnSilica also provides point services to companies with in-house ASIC design teams. These services include system engineering, analog and mixed signal design, and advanced verification using UVM, DFT and physical implementation.  For further information about EnSilica, visit http://www.ensilica.com.

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

ROHM Automotive Intelligent Power Device (IPD)
Modern automotive applications require a variety of circuit protections and functions to safeguard against short circuit conditions. In this episode of Chalk Talk, Amelia Dalton and Nick Ikuta from ROHM Semiconductor investigate the details of ROHM’s Automotive Intelligent Power Device, the role that ??adjustable OCP circuit and adjustable OCP mask time plays in this solution, and the benefits that ROHM’s Automotive Intelligent Power Device can bring to your next design.
Feb 1, 2024
11,408 views