industry news
Subscribe Now

Xilinx Announces SDAccel Development Environment for OpenCL, C, and C++, Delivering Up to 25X Better Performance/Watt to the Data Center

NEW ORLEANSNov. 17, 2014 /PRNewswire/ — At Super Computing 2014, Xilinx, Inc. (NASDAQ: XLNX) today announced the SDAccel™ development environment for OpenCL™, C, and C++, enabling up to 25X better performance/watt for data center application acceleration leveraging FPGAs. SDAccel, the newest member of the SDx™ family, combines the industry’s first architecturally optimizing compiler supporting any combination of OpenCL, C, and C++ kernels, along with libraries, development boards, and the first complete CPU/GPU-like development and run-time experience for FPGAs.

“FPGA-based technology is breaking new grounds to enable optimized compute applications,” said Robert Hormuth, executive director, Platform Architecture & Technology, Office of the CTO at Dell. “Ease of programming is required to lower the barrier for adopting FPGA-based accelerators in deployment of Dell servers. Xilinx is clearly on the right path to enable developers with a software environment that will accelerate productivity for FPGA platform users.”

“IBM likes the Xilinx direction for enabling software programmability for Xilinx FPGAs. The flexibility and QoR of creating optimized FPGA accelerators from C, C++ and OpenCL can accelerate IBM’s ability to bring greater value to our customers,” said Brad McCredie, IBM vice president of Power Development and OpenPOWER president. “IBM believes OpenCL would benefit productivity and is working with Xilinx to adopt this technology into OpenPOWER product designs.”

First Architecturally Optimizing Compiler for OpenCL, C, and C++

SDAccel’s architecturally optimizing compiler delivers up to 25X better performance/watt compared to CPUs or GPUs and 3X the performance and resource efficiency of other FPGA solutions. SDAccel leverages foundational compiler technology that is utilized by more than 1,000 programmers. SDAccel harnesses the power of this complier and enables software developers to leverage new or existing OpenCL, C, and C++ code for creating high performance accelerators, optimized for memory, dataflow, and loop pipelining in a wide range of data center applications such as compute search, image recognition, machine learning, transcoding, storage compression and encryption.

First Complete CPU/GPU Like Development Experience on FPGAs

With SDAccel, developers can use a familiar workflow to optimize their applications and take advantage of FPGA platforms with no prior FPGA experience. The integrated design environment (IDE) provides coding templates and software libraries, and enables compiling, debugging, and profiling against the full range of development targets including emulation on x86, performance validation using fast simulation, and native execution on FPGA processors. The IDE executes the application on data center-ready FPGA platforms complete with automatic instrumentation insertion for all supported development targets. SDAccel has also been architected to enable CPU/GPU developers to easily migrate their applications to FPGAs while maintaining and reusing their OpenCL, C, and C++ code in a familiar workflow.  

The comprehensive SDAccel environment includes the programmer-ready IDE, C-based FPGA optimized libraries, as well as commercial off-the-shelf (COTS) platforms ready for data center use.

SDAccel libraries include OpenCL built-ins, DSP, Video, and linear algebra libraries for high performance, low power implementations. For domain specific acceleration, optimized OpenCV and BLAS OpenCL compatible libraries are available from Xilinx Alliance member Auviz Systems, Initial COTS members include Alpha Data, Convey, Pico Computing with more being added in early 2015.

First Complete CPU/GPU Like Run-time Experience on FPGAs  

Only SDAccel supports large applications with multiple programs and CPU/GPU like on-demand loadable compute units. Unique to FPGA solutions, and like CPU/GPUs, SDAccel keeps the system functional during program transitions. SDAccel is the only environment that creates FPGA-based compute units that can load new accelerator kernels while an application is running. Throughout application execution, critical system interfaces and functions such as memory, Ethernet, PCIe® and performance monitors are kept live. On-the-fly reconfigurable compute units allow FPGA accelerators to be shared across multiple applications. For example, operational systems can be programmed to switch between image search, video transcoding and image processing.  

Availability
Live SDAccel product demonstrations are available at this week’s Super Computing 2014 conference, booth #3903 in New Orleans. To access the capabilities of SDAccel Early Access release, please contact your local sales representative.  To learn more visit www.xilinx.com/sdaccel.

The product is based on a published Khronos Specification, and is expected to pass the Khronos Conformance Testing Process. Current conformance status can be found atwww.khronos.org/conformance.

About SDx

SDx is a family of development environments for systems and software engineers. SDx enables developers with little or no FPGA expertise to use high level programming languages to leverage the power of programmable hardware with industry standard processors on or off chip. To learn more visitwww.xilinx.com/sdx.

About Xilinx

Xilinx is the world’s leading provider of All Programmable FPGAs, SoCs and 3D ICs. These industry-leading devices are coupled with a next-generation design environment and IP to serve a broad range of customer needs, from programmable logic to programmable systems integration. For more information, visit www.xilinx.com.

Leave a Reply

featured blogs
Mar 28, 2024
'Move fast and break things,' a motto coined by Mark Zuckerberg, captures the ethos of Silicon Valley where creative disruption remakes the world through the invention of new technologies. From social media to autonomous cars, to generative AI, the disruptions have reverberat...
Mar 26, 2024
Learn how GPU acceleration impacts digital chip design implementation, expanding beyond chip simulation to fulfill compute demands of the RTL-to-GDSII process.The post Can GPUs Accelerate Digital Design Implementation? appeared first on Chip Design....
Mar 21, 2024
The awesome thing about these machines is that you are limited only by your imagination, and I've got a GREAT imagination....

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured chalk talk

What are the Differences Between an Integrated ADC and a Standalone ADC?
Sponsored by Mouser Electronics and Microchip
Many designs today require some form of analog to digital conversion but how you implement an ADC into your design can make a big difference when it comes to accuracy and precision. In this episode of Chalk Talk, Iman Chalabi from Microchip and Amelia Dalton investigate the benefits of both integrated ADC solutions and standalone ADCs. They discuss the roles that internal switching noise, process technology, and design complexity play when choosing the right ADC solution for your next design.
Apr 17, 2023
38,897 views