industry news
Subscribe Now

Imec and its Partners Achieve Record Efficiency for Large Area Industrial Crystalline-silicon n-PERT Solar Cell

SEMICON WEST/INTERSOLAR NORTH AMERICA (Booth #SH2311), San Francisco — July 7, 2014 — Nano-electronics research center imec, reported today an n-type PERT crystalline silicon (Si) solar cell fabricated on a large area wafer (15.6cm x 15.6 cm) reaching a top conversion efficiency of 21.5 percent (calibrated at ISE Callab). This is the highest efficiency achieved for this type of solar cell on an industrial large area wafer size. This result will accelerate the adoption of n-type PERT (Passivated Emitter, Rear Totally diffused) solar cells in the industry as it clearly shows the potential for improved conversion efficiencies for next generation standard two side contacted crystalline silicon solar cells. Additionally imec researchers showed recently that n-type PERT solar cells of imec, having a rear emitter, are not affected by reliability risks originating from a front Ni/Cu plated metallization.

The cell reaching this 21.5 percent conversion efficiency had an open circuit voltage (Voc) of 677mV, a short circuit current (Jsc) of 39.1 mA/cm2, and 81.3% fill factor, and features a rear blanket p+ emitter obtained by boron diffusion. Reliable front metal contacts on an n+ front-surface-field are formed by means of Ni/Cu/Ag plating (3 bus bars grid) using an industrial plating tool from Meco, while the rear local contacts to the p+ emitter were obtained by laser ablation of the rear passivation stack and subsequent physical-vapor-deposition of aluminum. The rear passivation stack includes a thin (<10 nm) Atomic-Layer-Deposited (ALD) Al2O3 layer, deposited with the spatial ALD technique InPassion Lab® from SoLayTec. The adoption of ALD Al2O3 based-passivation for the p+ emitter resulted in an average improvement in cell efficiency of about 0.3% absolute with respect to passivation by wet oxidation. This illustrates the excellent capabilities of ALD for passivation layers in next generation cell concepts like PERC and n-type PERT.

“Notwithstanding the early development stage, the result shows very high efficiency potential of n-type PERT solar cells,” said Jozef Szlufcik, director of imec’s PV department, “Moreover, n-type cells remain unaffected by light induced degradation present in p-type cells due to Boron-Oxygen complex, which results in improved long term energy yield and, therefore, lower total cost/kWh”.

These results have been achieved in the framework of the imec’s industrial affiliation program on advanced silicon solar cells, dedicated to developing high performance and low cost Si PV-technologies. In this program, imec works closely together with industrial and academic partners along the solar cell value chain. Via participation and contribution to this program, these partners support imec’s developments and obtain early access to new technology solutions in this way accelerating their own product development.
To learn more about imec’s solar cell research progress, please visit the imec at booth #SH2311 at Semicon West/Intersolar North America, taking placeJuly 8-10, 2014 in San Francisco.

This press release can be downloaded at http://www2.imec.be/be_en/press/imec-news/imec-nPERT-solar-cell.html

About imec

Imec performs world-leading research in nanoelectronics and photovoltaics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of over 2,080 people includes more than 670 industrial residents and guest researchers. In 2013, imec’s revenue (P&L) totaled 332 million euro. Further information on imec can be found at www.imec.be. Stay up to date about what’s happening at imec with the monthly imec magazine, available for tablets and smartphones (as an app for iOS and Android), or via the websitewww.imec.be/imecmagazine

Leave a Reply

featured blogs
Apr 23, 2024
The automotive industry's transformation from a primarily mechanical domain to a highly technological one is remarkable. Once considered mere vehicles, cars are now advanced computers on wheels, embodying the shift from roaring engines to the quiet hum of processors due ...
Apr 22, 2024
Learn what gate-all-around (GAA) transistors are, explore the switch from fin field-effect transistors (FinFETs), and see the impact on SoC design & EDA tools.The post What You Need to Know About Gate-All-Around Designs appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Optimize Performance: RF Solutions from PCB to Antenna
Sponsored by Mouser Electronics and Amphenol
RF is a ubiquitous design element found in a large variety of electronic designs today. In this episode of Chalk Talk, Amelia Dalton and Rahul Rajan from Amphenol RF discuss how you can optimize your RF performance through each step of the signal chain. They examine how you can utilize Amphenol’s RF wide range of connectors including solutions for PCBs, board to board RF connectivity, board to panel and more!
May 25, 2023
37,471 views