industry news
Subscribe Now

Element Six’s GaN-on-Diamond Wafers Proven by Raytheon to provide 3x improvement in power density vs GaN-on-SiC for RF Devices

14 May, 2014—Element Six, the world leader in synthetic diamond supermaterials and a member of the De Beers Group of Companies, today announced that its Gallium Nitride (GaN)-on-Diamond wafers have been proven by Raytheon Company to significantly outperform industry standard Gallium Nitride-on-Silicon Carbide (GaN-on-SiC) in RF devices—reducing thermal resistance, increasing RF power density, and preserving RF functionality.

In high electron mobility transistor (HEMT) devices, Raytheon achieved a 3 times improvement in GaN-on-Diamond’s RF areal power density, compared to GaN-on-SiC devices. The GaN-on-Diamond devices also demonstrated a nearly 3 times reduction in thermal resistance. Raytheon used several industry standard thermal measurement techniques, including time-domain thermal reflectance (TDTR), laser flash, and resistance thermometry, as well as finite-element modeling, to establish the consistency of these results.

Upon reaching these milestones, Raytheon has met the aggressive objectives of the Defense Advanced Research Project Agency’s (DARPA) Near Junction Thermal Transport (NJTT) program, which aimed to develop GaN RF devices that exhibit three times or greater improvement in power density through improved thermal management.

GaN-on-Diamond substrates, fabricated by Element Six, exhibit a clear advantage over other substrate materials because synthetic diamond dissipates heat up to five times more effectively than silicon or silicon carbide. This dissipation advantage, coupled with the close proximity of the diamond to the GaN results in a dramatic reduction in the thermal resistance of GaN-on-Diamond wafers.  Lower thermal resistance enables simpler and less expensive thermal management systems and reliable operation in higher ambient temperatures, as well as more cost-effective RF devices.

“Heat issues account for more than 50 percent of all electronic failures, and limit GaN’s inherent power-density performance potential,” said Adrian Wilson, director of Element Six Technologies Group. “RF and high-voltage power device manufacturers that leverage GaN-on-Diamond will have access to unmatched wafer thermal conductivity, and be able to deliver rapid, efficient and cost-effective heat extraction. As the first company to make GaN-on-Diamond wafers commercially available, we look forward to collaborating with manufacturers to tap into the unique properties of synthetic diamond.”
  
Having been designed for manufacturers of transistor-based circuits with high power, high voltage, and high frequency characteristics, Element Six’s GaN-on-Diamond wafers will lead to the creation of smaller, faster, more energy efficient, and higher power electronic devices that enjoy longer lifespans and improved reliability. GaN-on-Diamond technology offers revolutionary advantages over all other available RF semiconductor materials, delivering superior system performance and cost, which makes it ideal for next generation device technology in both defense and commercial applications.

To learn more about GaN-on-Diamond wafers for advanced defense or commercial applications, please visit www.e6.com/GaN

About Element Six

Element Six is a synthetic diamond supermaterials company. Element Six is a member of The De Beers Group of Companies, its majority shareholder. Element Six designs, develops and produces synthetic diamond supermaterials, and operates worldwide with its head office registered in Luxembourg, and primary manufacturing facilities in China, Germany, Ireland, Sweden, South Africa, U.S. and the U.K.

Element Six supermaterial solutions are used in applications such as cutting, grinding, drilling, shearing and polishing, while the extreme properties of synthetic diamond beyond hardness are already opening up new applications in a wide array of industries such as optics, power transmission, water treatment, semiconductors and sensors.

Leave a Reply

featured blogs
Apr 23, 2024
The automotive industry's transformation from a primarily mechanical domain to a highly technological one is remarkable. Once considered mere vehicles, cars are now advanced computers on wheels, embodying the shift from roaring engines to the quiet hum of processors due ...
Apr 22, 2024
Learn what gate-all-around (GAA) transistors are, explore the switch from fin field-effect transistors (FinFETs), and see the impact on SoC design & EDA tools.The post What You Need to Know About Gate-All-Around Designs appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

High-Voltage Isolation for Robust and Reliable System Operation
In this episode of Chalk Talk, Amelia Dalton and Luke Trowbridge from Texas Instruments examine the benefits of isolation in high voltage systems. They also explore the benefits of TI’s integrated transformer technology and how TI’s high voltage isolations can help you streamline your design process, reduce your bill of materials, and ensure reliable and robust system operation.
Apr 27, 2023
38,996 views