industry news
Subscribe Now

PLS’ Universal Debug Engine 4.2 enables real multicore debugging even with deeply embedded systems

Lauta (Germany), January 27, 2014 – PLS Programmierbare Logik & Systeme is exhibiting the Universal Debug Engine (UDE) 4.2 at its Booth 4 310 in Hall 4 at embedded world 2014, February 25 27, 2014 in Nuremberg, Germany. The UDE 4.2 features greatly enhanced control and test methods for multicore targets, optimized visualization options during system level testing as well as the dedicated support for a wide range of the very latest 32-bit multicore SoCs from various manufacturers.

Control of a multicore system and debugging is carried out with the UDE 4.2 in a consistently designed user interface. Various colors determinable by the user and user-definable groups of views for individual function units ensure a fast overview and simple navigation, also in complex SoCs. Individual cores can be specifically selected and also synchronized for control by the debugger. This also includes the extensive use of existing on-chip trigger and synchronization options of various device manufacturers. With the UDE 4.2, the consistent user interface ensures the greatest possible flexibility when controlling a multicore target, without the need to know the underlying on-chip logic in detail.

The trace framework of the Universal Debug Engine 4.2 has also been equipped with numerous new features. For example, relocation of the data processing in a separate process not only increases the speed of the evaluation, but also allows persistent storage of trace sessions for analysis at a later time without direct access to the target. Furthermore, comprehensive filters and the possibility to individually color recorded events of various trace sources simplify a clear presentation of the results.

An enhancement of the proven Universal Emulation Configurator (UEC) of the Universal Debug Engine (UDE) ensures an even more efficient use of the so-called Emulation Devices offered by Infineon, Freescale and STMicroelectronics for some SoCs. Programming of the additional trigger logic contained on the Emulation Devices is performed by a graphical configuration of trace tasks, by which signals and actions are linked via a state machine.

With PLS’ Universal Access Device 3+ (UAD3+), a powerful hardware tool with 4 GB external trace memory is available for recording trace data. Thanks to an Aurora trace pod supporting four serial high-speed lanes each with 3.25 gigabit per second (Gbit/s) transfer rate and a parallel trace pod for recording signals up to 500 MHz, the UAD3+ is also well equipped to meet future requirements.

A fast and safe evaluation of immense volumes of trace data is supported by a new module that complies with ISO 26262 requirements, which for the first time also enables coverage analysis of optimized code. At the same time, the DWARF format that is typically used for debugging information has been extended so that control flow changes triggered by the compiler are recognizable for the debugger. In addition to bar graphs for a quick overview, the report generated contains a detailed list of statement and branch coverage per function, source text lines and individual machine instructions. Likewise, code not executed, only partially covered areas of code or jumps not executed can be located very quickly. The report can be used as proof of the software quality assurance in the context of the documents required by the ISO 262626 standard. A first implementation by the compiler manufacturer HighTec has already proven its continuous suitability for practical use.

Microcontrollers (MCUs) newly supported by the UDE 4.2 include the latest steps of Infineon’s AURIX family, Freescale’s Qorivva MPC57XX family as well as STMicroelectronics SPC57x family. With these three families of MCUs, programs for the integrated Generic Timer Module (GTM) and Hardware Security Module (HSM) can also be debugged. At the same time, the Cortex-R4 based Hercules microcontroller platform from Texas Instruments with the families TMS570LS and RM4x, which were designed specifically for safety-critical applications according to IEC 61508 SIL-3 and ISO 26262 ASIL D, and the Cortex-M0 based XMC1000 devices from Infineon, are fully supported by the UDE 4.2. 

PLS Programmierbare Logik & Systeme GmbH

PLS Programierbare Logik & Systeme GmbH, based in Lauta, Germany, was founded in 1990 by Thomas Bauch and Dr. Stefan Weisse. With its innovative modular test and development tools, the company has demonstrated for over two decades its position as an international technology leader in the field of debuggers, emulators and trace solutions for 16-bit and 32-bit microcontrollers. The software architecture of the Universal Debug Engine (UDE) guarantees optimal conditions for debugging SoC-based systems. For example, by means of the intelligent use of modern on-chip debugging and on-chip trace units, valuable functions such as profiling and code coverage are available for the system optimization. Furthermore, the associated Universal Access Device (UAD2/UAD3+) product family, with transfer rates of up to 3.5 MBytes/s and a wide range of interfaces, offers entirely new dimensions for fast and flexible access to multi-core systems. Important architectures such as TriCore, Power Architecture, XC2000/XE166, ARM, Cortex, SH-2A, XScale and C166/ST10 as well as simulation platforms of different vendors are supported. For further information about the company, please visit www.pls mc.com.

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Shift Left with Calibre
In this episode of Chalk Talk, Amelia Dalton and David Abercrombie from Siemens investigate the details of Calibre’s shift-left strategy. They take a closer look at how the tools and techniques in this design tool suite can help reduce signoff iterations and time to tapeout while also increasing design quality.
Nov 27, 2023
20,077 views