industry news
Subscribe Now

Coventor Improves Speed and Compatibility of MEMS and IC Co-Design with New Release of Industry-Leading MEMS Design Suite

CARY, North Carolina – October 21, 2013 – Coventor®, Inc., the leading supplier of design automation solutions for micro-electromechanical systems (MEMS), today announced its MEMS+® 4.0 software suite for accelerating development of advanced MEMS devices and systems. The MEMS+ suite enables MEMS and IC designers to rapidly explore and optimize designs in parallel in the MathWorks MATLAB® and Cadence Virtuoso® environments. The MEMS+ 4.0 release features a new capability to export models in Verilog-A format and a full 64-bit implementation that allows more accurate modeling of complex MEMS sensors and actuators.

The MEMS+ 4.0 suite is a key part of Coventor’s platform for MEMS development, which also includes the CoventorWare® and SEMulator3D® software suites. The platform provides a complete solution for designing and verifying state-of-the-art accelerometers, gyroscopes, microphones and many other types of MEMS. This latest release of the MEMS+ suite extends the scope of the platform by providing a ‘tunable’ accuracy-versus-speed approach for co-designing MEMS and integrated circuits (ICs) and compatibility with more EDA analog/mixed-signal simulation environments.

Faster, More Compatible MEMS Modeling

With MEMS+ 4.0, MEMS designers can automatically generate and export Reduced Order Models (ROMs) in Verilog-A format for use by IC designers. These exported models simulate 100X faster than fully non-linear MEMS+ models and are compatible with all commercial analog/mixed-signal circuit simulators that support the industry-standard Verilog-A hardware description language. During model generation, designers can select one or more non-linear input variables; all other input variables are linearized about selected non-linear operating points. This approach is ideally suited to sensor and resonator applications due to their relatively small displacement in comparison to air gaps. In comparison to hand-crafted Verilog-A models, these automatically generated models simulate just as fast while capturing much more behavioral complexity, including multiple degrees of freedom, environmental sensitivities, critical non-linear effects and the influence of packaging on device performance. Equally important, the MEMS+approach is automated and much less labor intensive, eliminating opportunities for human error and assuring that the models stay in sync with design changes. When IC designers find behavior that requires deeper analysis, they can switch to full MEMS+ models in the Cadence Virtuoso environment for more detailed investigations.

According to Murata’s ASIC Design Manager Tero Sillanpää, “The Verilog-A Reduced Order Model (ROM) exported from MEMS+ 4.0 captures second order effects not seen in basic hand-crafted models without any compromise in simulation performance. We were able to create a Verilog-A ROM of a complex gyro design in just a few minutes, allowing our ASIC team to work in parallel with the MEMS team on further design iterations. Harmonic simulations in Cadence showed that the model maintained the expected modal frequencies and was stable. Moreover, transient startup simulations were very fast, on the order of 25s CPU time for 1s real time, before front-end electronic components including RC parasitics were added. The robust model exchange between MEMS and ASIC designers enabled by MEMS+ reduces the probability of design error and can help avoid costly redesign iterations needed to address unexpected behavior.” 

Higher Capacity Platform

The MEMS+ 4.0 release also features a full 64-bit implementation of all software components, providing the capacity to handle larger models that more accurately represent device structural details and behavior. This enhancement is particularly relevant for sensor applications due to the increasing structural complexity of state-of-the-art gyro and microphone designs.

In addition to this capacity enhancement to the MEMS+ suite, Coventor has achieved dramatic simulation speed improvements to key field solvers in the CoventorWare suite that will be highlighted in the upcoming CoventorWare 2014 release. These improvements will make it practical for users to simulate more complex structures or conduct more in-depth design explorations.

“MEMS+ 4.0 further strengthens the only ‘industrial-strength’ platform for MEMS development available today with even greater accuracy, speed, capacity and eco-system compatibility. This latest release is another significant step toward our goal of significantly reducing time-to-market for MEMS products by reducing the need for time-consuming build-and-test cycles,” said Coventor’s CEO Mike Jamiolkowski.

Availability

The MEMS+ 4.0 software is shipping now. For more detailed product information and to download the new software release, users can visit: http://www.coventor.com/support/software-downloads/.

About Coventor

Coventor, Inc. is the market leader in automated design solutions for micro-electromechanical systems (MEMS) and virtual fabrication of MEMS and semiconductor devices. Coventor serves a worldwide customer base of integrated device manufacturers, fabless design houses, independent foundries, and R&D organizations that develop MEMS-based products for automotive, aerospace, industrial, defense, and consumer electronics applications, including smart phones, tablets, and gaming systems. Coventor’s software tools and expertise enable its customers to simulate and optimize MEMS device designs and fabrication processes before committing to time-consuming and costly build-and-test cycles. The company is headquartered in Cary, North Carolina and has offices in California’s Silicon Valley, Cambridge, Massachusetts, and Paris, France. More information is available at http://www.coventor.com.

Leave a Reply

featured blogs
Apr 18, 2024
Analog Behavioral Modeling involves creating models that mimic a desired external circuit behavior at a block level rather than simply reproducing individual transistor characteristics. One of the significant benefits of using models is that they reduce the simulation time. V...
Apr 16, 2024
Learn what IR Drop is, explore the chip design tools and techniques involved in power network analysis, and see how it accelerates the IC design flow.The post Leveraging Early Power Network Analysis to Accelerate Chip Design appeared first on Chip Design....
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Autonomous Mobile Robots
Sponsored by Mouser Electronics and onsemi
Robotic applications are now commonplace in a variety of segments in society and are growing in number each day. In this episode of Chalk Talk, Amelia Dalton and Alessandro Maggioni from onsemi discuss the details, functions, and benefits of autonomous mobile robots. They also examine the performance parameters of these kinds of robotic designs, the five main subsystems included in autonomous mobile robots, and how onsemi is furthering innovation in this arena.
Jan 24, 2024
12,341 views