industry news
Subscribe Now

MicroGen’s piezo-MEMS vibration energy harvesters enable Linear Technology SmartMesh IP wireless sensor network

ROCHESTER, NY – June 25, 2013 – MicroGen Systems, Inc. (“MicroGen”) announced today that vibration energy harvesting BOLT™ Power Cells (see Figure 1) enabled a live wireless sensor network (WSN) using Linear Technology’s (“Linear”) Dust Networks LTC5800-IPM SmartMesh™ IP mote-on-chip at the Sensors Expo and Conference exhibition in Rosemont, IL on June 5-6, 2013 (see similar demonstration video – Linear Demo). The Linear mote was powered by MicroGen’s piezoelectric Micro Electro Mechanical Systems (piezo-MEMS) vibrational energy harvester or micro-power generator (MPG) technology.

The Linear WSN consisted of four (4) motes, and their WSN software for efficient power managed communication was used. The self-powered motes were enabled by electronic shakers set at typical industrial vibrations levels of 120 Hz and acceleration G-level 0.2g (g = 9.8 m/s²). MicroGen placed vibration powered motes at the Linear booth and at the X-FAB MEMS Foundry booth. These motes were on the order of 20-30 meters away from MicroGen’s booth. This was the first fully MEMS energy harvesting powered WSN completed by a commercial company.

Inside MicroGen’s BOLT Power Cell is a small semiconductor MEMS chip fabricated using similar techniques as the computer chip industry. This chip is a ~1.0 cm² piezo-MEMS MPG containing one end-mass loaded micro-cantilever containing a piezoelectric thin film. As the MPG’s cantilever bends up and down due to the external vibrational force it produces alternating current (AC) electricity. At resonance the AC power output is maximized, where it is ~100 microWatts at 120 Hz and ? 0.1 g, and ~900 microWatts at 600 Hz and ? 0.5 g.

The AC electricity is efficiently converted to direct current (DC) using Linear Technology’s LTC3588-1piezoelectric energy harvesting AC to DC converter. After the energy is scavenged it is temporarily stored on a 300 microFarad capacitor. The output of the Power Cell ranges from 25-500 microWatts at 3.3 Volts DC, depending upon configuration and frequency. The BOLT Power Cell is intended to enable a wireless sensor mote from many different manufacturers.

The bottom-line is that the BOLT Power Cell is simply a battery replacement unit that uses vibrational energy instead of chemical energy produced by environmentally unfriendly materials. The intent is to eliminate or extend the lifetime of primary cells or rechargeable batteries in WSN industrial and building applications, where the labor to frequently change batteries is cost prohibitive for a WSN to be installed.Power cells will be offered at 50/60 Hz harmonics between 100-1500 Hz. MicroGen’s MPGs and Power Cellsare very sensitive to low levels of G. At G-levels < 0.1-0.5 g (depends upon frequency) at a specific industrial signature frequency, then the Power Cell will enable the WS mote attached. In volume the MPG and Power Cell production cost are estimated be on the order of $0.50 and $1.00 each, respectively.

Joy Weiss, President of the Dust Networks product group at Linear Technology stated, “I am pleased to see the progress that MicroGen is bringing to energy harvesting to enable self-powered SmartMesh wireless sensors.”

Linear Technology’s Boston Design Center’s Director, Sam Nork added, “MicroGen’s demonstration of its piezo-harvesting chip integrated with Linear Technology’s LTC3588 piezo conversion chip is a perfect match to efficiently produce DC electricity for WSN applications.”

MicroGen’s CEO, Robert Andosca stated, “We are very pleased that we were able to show a low cost energy harvester solution to enable Linear Technology’s SmartMesh wireless motes. Our goal is to provide piezo-MEMS harvesters in a form-factor that can be used by all wireless sensor products currently on the market. Our BOLT Power Cell is the first example of doing so with a commercial MEMS-based energy harvesting generator component.”

MicroGen unveiled their BOLT™ product line at the Sensors Expo this month. MicroGen plans to announce the availability of their products late summer 2013. Initially, MicroGen will offer MPGs and BOLT Power Cells at frequencies 100, 120 and 600 Hz. For extra energy storage, plug-in BOLT Energy Cells will be available with (a) 22 milliFarad Panasonic ultra-capacitor, (b) 50 microAmp-hr Cymbet Corporation solid-state battery, and (c) 7.0 milliAmp-hr Panasonic rechargeable coin cell. Please see BOLT products webpage, which contains links to all MicroGen product data-sheets.

About MicroGen Systems, Inc.

MicroGen is bringing to market a suite of products based on its proprietary piezo-MEMS platform technology at X-FAB Silicon Foundries AG (www.xfab.com) production facility located north of Hamburg, Germany. MicroGen’s first piezo-MEMS component is a small (volume < 1.0 cm³; smaller than a green pea) vibrational energy harvester or MPG. The MPG is the ‘heart’ of MicroGen’s BOLT™ Power Cell DC power source. These low cost, long lifetime products scavenge otherwise wasted ambient vibrational energy will replace or extend the lifetime of batteries in wireless sensor and other microelectronic applications.

MicroGen’s primary target market is the industrial and building markets (e.g. process automation, machinery monitoring, lighting control, HVAC, smart utility metering, and many others). Longer term, the secondary market is transportation systems (e.g. planes, trains and automobiles, civil infrastructure monitoring, asset tracking and numerous others).

MicroGen located in Rochester, NY developed its core piezoelectric platform technology at Cornell University (www.cnf.cornell.edu). MicroGen is led by a strong international management team, Board of Directors and Advisory Board with significant semiconductor and MEMS industry and start-up company experience.

For more information, visit www.microgensystems.com.

About Linear Technology

Linear Technology Corporation, a member of the S&P 500, has been designing, manufacturing and marketing a broad line of high performance analog integrated circuits for major companies worldwide for over three decades. The Company’s products provide an essential bridge between our analog world and the digital electronics in communications, networking, industrial, automotive, computer, medical, instrumentation, consumer, and military and aerospace systems. Linear Technology produces power management, data conversion, signal conditioning, RF and interface ICs, µModule® subsystems, and wireless sensor network products.

For more information, visit www.linear.com.

LT, LTC, LTM, µModule and are registered trademarks of Linear Technology Corp. All other trademarks are the property of their respective owners.

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

GaN Solutions Featuring EcoGaN™ and Nano Pulse Control
In this episode of Chalk Talk, Amelia Dalton and Kengo Ohmori from ROHM Semiconductor examine the details and benefits of ROHM Semiconductor’s new lineup of EcoGaN™ Power Stage ICs that can reduce the component count by 99% and the power loss of your next design by 55%. They also investigate ROHM’s Ultra-High-Speed Control IC Technology called Nano Pulse Control that maximizes the performance of GaN devices.
Oct 9, 2023
25,454 views