industry news
Subscribe Now

CEVA Introduces MUST™ Multi-core System Technology, Adds Vector Floating-point Capabilities for CEVA-XC DSP Architecture Framework

MOUNTAIN VIEW, Calif., Feb. 19, 2013 /PRNewswire/ — CEVA, Inc. (NASDAQ: CEVA), the leading licensor of silicon intellectual property (SIP) platform solutions and DSP cores, today announced a suite of advanced  processor and multi-core technologies to further enhance the CEVA-XC DSP architecture framework for high performance wireless applications including wireless terminals, small cells, access points, metro and macro base-stations. Among the new enhancements are: comprehensive multi-core features, high-throughput vector floating-point processing and a complete set of co-processor engines offering power-efficient hardware-software partitioning. CEVA has collaborated closely with leading OEMs, wireless semiconductors and IP partners for the definition and optimization of these technologies.

J. Scott Gardner, Senior Analyst at The Linley Group, commented: “In addition to improving performance while reducing cost and power consumption in wireless baseband designs, the new enhancements to the CEVA-XC architecture offer SoC designers a comprehensive environment to develop and optimize high-speed data flow in multi-core designs. Furthermore, the use of ARM’s latest interconnect and coherency protocols, together with advanced automated data traffic managers, as well as a dynamic scheduling software framework, position CEVA as the only DSP licensor today offering such extensive support for multi-core DSP-based SoCs. When combined with vectorized floating-point support and a wide range of coprocessor engines, the CEVA-XC architecture framework includes all the essential DSP platform components for a wide range of user equipment and infrastructure applications. 

MUST™ – advanced multi-core system technology

CEVA’s MUST™ is a cache-based multi-core system technology with advanced support for cache coherency, resource sharing and data management. Initially available for the CEVA-XC, MUST™ supports the integration of multiple CEVA-XC DSP cores in a symmetric multiprocessing or asymmetric multiprocessing system architecture, along with a broad range of technologies designed specifically for multi-core DSP processing. These technologies include:

  • Dynamic scheduling using shared pools of tasks,
  • Hardware event based scheduling defined via software,
  • Task and data driven shared resource management,
  • Advanced  memory hierarchy support with full cache coherency,
  • Advanced automated data traffic management without software intervention, and
  • Special prioritization scheme based on task-awareness.

To facilitate the development of advanced multi-core SoCs containing ARM® processors and multiple CEVA DSPs, CEVA has added extensive support to the CEVA-XC architecture framework for the ARM AXI4 interconnect protocol and AMBA 4 ACE cache coherency extensions. This dramatically simplifies the software development and debugging process for SoC designs, while also reducing the software cache management overhead, processor cycles and external memory bandwidth. The overall outcome is much tighter integration between the processors in the SoC, resulting in improvements in energy-efficiency and performance for the entire system.

Full support for vectorized floating-point operations

The LTE-Advanced and 802.11ac standards leverage multiple input multiple output (MIMO) processing, where the system utilizes multiple antennae to transmit and receive data. In order to achieve ultra-high precision and optimal performance when processing these complex data streams, CEVA has added support for floating-point operations to the CEVA-XC vector processor unit, in addition to the traditional fixed-point capabilities. Floating-point operations are supported on full vector elements, processing up to 32 floating point operations in every core cycle to meet the performance requirements of even the most demanding wireless infrastructure applications. In addition to these enhancements, CEVA has further extended its technology leadership with a dedicated instruction set architecture (ISA) for high-dimension MIMO, including support for 802.11ac 4×4 use cases.

Complete set of ultra-low power coprocessors for wireless modems

To further optimize advanced wireless systems for low power and performance, CEVA has introduced a comprehensive set of tightly-coupled extension (TCE) coprocessor units. These coprocessors address functions of the modem where greater performance can be achieved through the use of hardware that is tightly coupled with the CEVA-XC. CEVA’s TCEs now include:

  • Maximum Likelihood MIMO Detectors (MLD),
  • 3G de-spreader units,
  • FFT with NCO phase correction,
  • DFT,
  • Viterbi,
  • HARQ combining, and
  • LLR compression / de-compression

These tightly-coupled extensions are complemented by a unique automated low-latency data traffic management between the DSP memory and the coprocessors to minimize DSP intervention and enable a truly parallel co-processing capability. CEVA offers these TCEs as part of fully integrated and optimized modem reference architectures for licensees targeting user equipment, infrastructure and Wi-Fi applications, serving to lower the overall power consumption and significantly reduce customers’ development costs and time to market.

Eran Briman, vice president of marketing at CEVA commented: “The suite of technologies introduced today for the CEVA-XC will serve to vastly improve the performance, power consumption and time-to-market for multi-core DSP SoC designs targeting wireless applications. We collaborated closely with industry leaders in the handset and infrastructure markets throughout the specification process, ensuring our IP exceeds the stringent specifications required by the wireless industry. The combination of our MUST multi-core system technology, vector floating-point operation support, full support for ARM’s latest interconnect protocols and the large set of function-specific tightly-coupled extensions further reinforces our unrivalled leadership in DSP technologies for communications and provides a comprehensive solution for the development of high performance systems for LTE-Advanced, Wi-Fi and beyond.”  

About CEVA, Inc.

CEVA is the world’s leading licensor of silicon intellectual property (SIP) DSP cores and platform solutions for the mobile, portable and consumer electronics markets. CEVA’s IP portfolio includes comprehensive technologies for cellular baseband (2G / 3G / 4G), multimedia (vision, imaging and HD audio), voice processing, Bluetooth, Serial Attached SCSI (SAS) and Serial ATA (SATA). In 2012, CEVA’s IP was shipped in more than 1 billion devices, powering smartphones from many of the world’s leading OEMs, including HTC, Huawei, Lenovo, LG, Nokia, Motorola, Samsung, Sony, TCL and ZTE. Today, more than 40% of handsets shipped worldwide are powered by a CEVA DSP core. For more information, visit www.ceva-dsp.com. Follow CEVA on twitter at www.twitter.com/cevadsp.

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

VITA RF Product Portfolio: Enabling An OpenVPX World
Sponsored by Mouser Electronics and Amphenol
Interoperability is a very valuable aspect of military and aerospace electronic designs and is a cornerstone to VITA, OpenVPX and SOSA. In this episode of Chalk Talk, Amelia Dalton and Eddie Alexander from Amphenol SV explore Amphenol SV’s portfolio of VITA RF solutions. They also examine the role that SOSA plays in the development of military and aerospace systems and how you can utilize Amphenol SV’s VITA RF solutions in your next design.
Oct 25, 2023
23,760 views