industry news
Subscribe Now

R&S ZNB Network Analyzer from Rohde & Schwarz Uses the SET2DIL Signal Integrity Technique To Validate High-Speed Differential Bus Performance on PCBs

Columbia, MD, January 31, 2012 — Utilizing SET2DIL (Single-Ended to Differential Insertion Loss) algorithm for validating high-speed differential transmission line performance on printed circuit boards (PCBs), the R&S ZNB network analyzer is a high-performance network analyzer that provides a wide dynamic range with high accuracy, short measurement time and ease of use.  The R&S ZNB network analyzer’s enhanced time-domain capabilities, coupled with the IPC-TM-650 approved SET2DIL methodology, enables post-processing of the network analyzer’s time domain reflectometer (TDR) and time-domain transmission (TDT) data to display differential insertion losses on PCB traces.  

Signal attenuation and distortion from dielectric and conductor losses is a major factor in proper high-speed differential transmission line simulation and design.  The insertion loss of multi-GHz traces must be modeled correctly for simulations to represent actual performance, and validated on actual designs to ensure simulation assumptions were met. 

The novel SET2DIL algorithm is a method for performing a SDD21 four-port frequency domain measurement using a two-port time domain measurement. This methodology derives differential insertion loss (SDD21) using only single-ended TDR/TDT (or 2-port VNA) measurements at a single probe location. This method, in conjunction with Rohde & Schwarz’s R&S ZNB network analyzer, will eventually  replace current 4-port measurements of two probe locations, which are appropriate for a laboratory environment. This technique allows much easier measurement of SDD21, making it acceptable for a wider variety of users, including high-volume manufacturing. 

“Rohde & Schwarz  is working on incorporating the SET2DIL algorithm into the ZNB Network Analyzer to provide unparalleled measurement accuracy and speed required for insertion loss measurements for high volume board testing and manufacturing,” said Jonathan Leitner, Product Marketing Manger – Network Analyzers at Rohde & Schwarz.  

Built into to the R&S ZNB network analyzer is an enhancement factor that allows the lower frequency analyzer to replace higher frequency – and higher cost – units for time-domain reflectometer (TDR) and time-domain transmission (TDT) functionality. Compared to high frequency devices, the R&S ZNB analyzer delivers a broader frequency range for the time domain transform (TDT) by one linear factor, meaning that the original sweep range and the measured sweep points are used, and no additional assumptions are made.  With higher resolution enhancement factors, the measurement data is extrapolated using a linear prediction method. As a result, the resolution in time domain is improved.  

The R&S ZNB network analyzer covers the frequency range from 9kHz to 4.5GHz or 8.5GHz, features a dynamic range up to 140dB, a sweep time of 4ms with 401 points, low trace noise and excellent stability. The ZNB has been designed to test demanding applications for the development and production of RF active and passive components. 

The R&S ZNB network analyzer has a large touchscreen that allows users to access all instrument functions with no more than three operating steps. The screen offers ample space for results, displaying even extensive measurements in a clear and straightforward manner.

Rohde & Schwarz

Rohde & Schwarz is an independent group of companies specializing in electronics. It is a leading supplier of solutions in the fields of test and measurement, broadcasting, radiomonitoring and radiolocation, as well as secure communications. Established more than 75 years ago, Rohde & Schwarz has a global presence and a dedicated service network in over 70 countries. It has approx. 7400 employees and achieved a net revenue of €1.3 billion (US$1.6 billion) in fiscal year 2009/2010 (July 2009 to June 2010). Company headquarters are in Munich, Germany.

Leave a Reply

featured blogs
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....
Apr 18, 2024
Analog Behavioral Modeling involves creating models that mimic a desired external circuit behavior at a block level rather than simply reproducing individual transistor characteristics. One of the significant benefits of using models is that they reduce the simulation time. V...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Switch to Simple with Klippon Relay
In this episode of Chalk Talk, Amelia Dalton and Lars Hohmeier from Weidmüller explore the what, where, and how of Weidmüller's extensive portfolio of Klippon relays. They investigate the pros and cons of mechanical relays, the benefits that the Klippon universal range of relays brings to the table, and how Weidmüller's digital selection guide can help you choose the best relay solution for your next design.
Sep 26, 2023
25,888 views