industry news
Subscribe Now

HELIOS Team Will Present Results of 40Gbit/s Optical Modulator Demonstration At Group IV Photonics Conference, Sept. 14-16, in London

GRENOBLE, France – Sept. 12, 2011 – CEA-Leti announced today that a team of European researchers and companies has achieved a major milestone towards fabricating silicon photonics circuits in CMOS foundries. 

By demonstrating for the first time a 40Gbit/s optical modulator in silicon with a record extinction ratio of 10dB (the power difference between the 1 and 0 data levels), members of the HELIOS Project accomplished one of the key project goals needed to build and optimize the entire supply chain for fabricating complex functional silicon- photonics devices from design to the process level. 

In addition to the 40Gb/s modulator, HELIOS partners are building the fabrication supply chain through several other complex photonic ICs that address a variety of industrial needs, including a 16×10 Gb/s transceiver, a photonic QAM-10Gb/s wireless transmission system and a mixed-analog and digital-transceiver module for multifunction antennas. 

Designed and characterized by staff in the Silicon Photonics Group at the Advanced Technology Institute, University of Surrey, UK, the modulator circuit was fabricated in a CMOS-compatible process by Leti, which is coordinating the project. HELIOS partners will present the results at the 8th International Conference on Group IV Photonics in London, Sept. 14-16. 

”This result is a major step towards high-bandwidth optical systems on silicon because it makes 40Gb/s modulators viable for commercial applications,” said Graham Reed, professor of silicon photonics at the University of Surrey.

Silicon photonics, which is the only viable technology to meet the demand of high-volume markets, has generated growing interest in recent years, mainly for optical telecommunications or for optical interconnects in microelectronic circuits.

CMOS photonics may lead to low-cost solutions for a range of applications such as optical communications, optical interconnections between semiconductor chips and circuit boards, optical signal processing, optical sensing, and biological applications. 

For more information on HELIOS, including a list of partners, visit the HELIOS Project website address is www.helios-project.eu/.

About CEA-Leti

Leti is an institute of CEA, a French research-and-technology organization with activities in energy, IT, healthcare, defence and security. Leti is focused on creating value and innovation through technology transfer to its industrial partners. It specializes in nanotechnologies and their applications, from wireless devices and systems, to biology, healthcare and photonics. NEMS and MEMS are at the core of its activities. An anchor of the MINATEC campus, CEA-Leti operates 8,000-m² of state-of-the-art clean room space on 200mm and 300mm wafer platforms. It employs 1,400 scientists and engineers and hosts more than 190 Ph.D. students and 200 assignees from partner companies. CEA-Leti owns more than 1,700 patent families.

For more information, visit www.leti.fr.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Miniaturization Impact on Automotive Products
Sponsored by Mouser Electronics and Molex
In this episode of Chalk Talk, Amelia Dalton and Kirk Ulery from Molex explore the role that miniaturization plays in automotive design innovation. They examine the transformational trends that are leading to smaller and smaller components in automotive designs and how the right connector can make all the difference in your next automotive design.
Sep 25, 2023
26,202 views