industry news
Subscribe Now

Oasys Design Systems adds DFT Capabilities to Chip Synthesis

SANTA CLARA, CALIF. –– June 2, 2011 — Oasys Design Systems today announced that its Chip Synthesis™ platform, in use in production environments, now includes design for test (DFT) capabilities, further extending the fast speed and high capacity of Oasys’ RealTime Designer™ software. 

This follows an earlier announcement that the Chip Synthesis platform supports chip-level power analysis and optimization, and has the ability to synthesize a design from the register transfer level (RTL) with UPF or CPF power constraints.  These additional features complete the fully integrated Chip Synthesis front-to-back design flow.

Oasys will offer informative and continuous demonstrations of RealTime Designer in Booth #2031 at the 48th Design Automation Conference (DAC) June 6-8 at the San Diego Convention Center in San Diego, Calif. 

“Half of the top 10 non-memory semiconductor companies are already using RealTime Designer or are actively evaluating RealTime Designer for their most complex designs,” remarks Paul van Besouw, Oasys’ president and chief executive officer (CEO).  “All believe that a Chip Synthesis environment will improve productivity and design efficiency.  Rounding out RealTime Designer’s capabilities with DFT and chip-level power analysis and optimization extends its fast speed and high capacity, making it a full-featured tool.”

The combination of full-chip synthesis and RealTime Designer’s DFT capabilities help designers create a better DFT architecture and chip partitioning for DFT.  With RealTime Designer, full-chip DFT synthesis can be performed in a single pass with fast turnaround and without the need for complex DFT abstraction and bottom-up flows.

Features include design checking and debugging for various DFT rule violations, test clock analysis, power-domains aware physical scan chain ordering and lockup-latch insertion.  It integrates third-party DFT-compression.  Information on pre-inserted DFT logic can be imported in the industry-standard IEEE 1450.6 (CTL) format. 

Chip Synthesis is a fundamental shift in how synthesis is applied to the design and implementation of integrated circuits (ICs).  Traditional block-level synthesis tools do a poor job of handling chip-level issues.  RealTime Designer is the first design tool for physical register transfer level (RTL) synthesis of 100-million gate designs.  It features a unique RTL placement approach that eliminates unending design closure iterations between synthesis and layout. 

RealTime Designer follows a “Place First” methodology that takes RTL code, partitions it into blocks, places it in the context of a floorplan and implements each block through to placement.  Chip-level constraints are automatically propagated across the blocks and the design is optimized for the best possible quality of results.  During the optimization phase, RealTime Designer will repartition the design at RTL and re-implement it until chip-level constraints are met.

Availability and Pricing

The latest version RealTime Designer, with DFT and chip-level power analysis capabilities, is shipping now and is priced from $395,000 (U.S.) for a one-year, time-based license.

About Oasys Design Systems

Oasys Design Systems is a privately funded electronic design automation (EDA) software supplier with a revolutionary new platform called Chip Synthesis™, a fundamental shift in how synthesis is used to design and implement ICs larger than 20-million gates.  It has attracted the support of legendary EDA leaders and its RealTime Designer™ product is in use at leading-edge semiconductor and systems companies worldwide.  Follow Oasys on Twitter at: www.twitter.com/OasysDS.  Corporate Headquarters is located at 3250 Olcott Street, Suite 120, Santa Clara, Calif.  95054. Telephone:  (408) 855-8531.  Facsimile:  (408) 855- 8537.  Email:  info@oasys-ds.com.  For more information, visit:  www.oasys-ds.com.

Leave a Reply

featured blogs
Apr 23, 2024
The automotive industry's transformation from a primarily mechanical domain to a highly technological one is remarkable. Once considered mere vehicles, cars are now advanced computers on wheels, embodying the shift from roaring engines to the quiet hum of processors due ...
Apr 22, 2024
Learn what gate-all-around (GAA) transistors are, explore the switch from fin field-effect transistors (FinFETs), and see the impact on SoC design & EDA tools.The post What You Need to Know About Gate-All-Around Designs appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

High-Voltage Isolation for Robust and Reliable System Operation
In this episode of Chalk Talk, Amelia Dalton and Luke Trowbridge from Texas Instruments examine the benefits of isolation in high voltage systems. They also explore the benefits of TI’s integrated transformer technology and how TI’s high voltage isolations can help you streamline your design process, reduce your bill of materials, and ensure reliable and robust system operation.
Apr 27, 2023
38,996 views