Moore’s Law Meets the Trade Press

EE Journal Turns 11

by Kevin Morris

We live and work in an amazing time. The global community of electronic engineers has created the greatest leap of technological progress in human history. In the almost fifty years that Moore's Law has existed, the number of transistors we can put on a single chip has risen from fifty to somewhere around twenty billion. That is a truly amazing achievement. And the power of that almost unimaginable feat has rippled and ripped through just about every aspect of our lives and our culture.

As the creators of that change, we have faced a unique challenge. While the rest of the world gets to enjoy the fact that electronic technology doubles in capability every two years, electronic engineers are faced with the harsh reality that we have to double our own productivity on that same schedule. Moore's Law becomes our mandate. I am aware of no other profession that requires a constant exponential improvement in worker productivity just to stay in the game.

 

New Sound in Town

Vesper Announces Piezoelectric Microphones

by Bryon Moyer

Microphones are not for the faint of heart. There is a sordid history of MEMS microphones, replete with big companies crying “Uncle!” and with legal vitriol.

Unlike something as “simple” as an accelerometer (with apologies to anyone that’s worked damned hard on a fine accelerometer), there’s been less rush to compete once everyone figured out how hard microphones can be.

And so we have a few deeply entrenched incumbents manning the sound.

But microphones still look interesting as an opportunity. We saw some time ago that multiple microphones are becoming a thing. Why? For the same reason that high-quality sound recording uses them. By recording an orchestra and the audience with two mikes, for example, you now have two tracks, and you can subtract the audience track from the orchestra track to get a cleaner version of the orchestra.

 

Hello Rubber, Meet Road

Valencell’s Biometric Testing Takes IoT Out for a Spin

by Amelia Dalton

This here twin-turbo EEJournal.com podcastin’ hot rod is headed to the IoT finish line - one biometric at a time. In this week’s Fish Fry, we investigate biometric data sensors and how one company is making sure that our fitness is actually what we think it is. My guest is Valencell President Steven LeBoeuf. Steven and I are going to chat about the future of the wearable market, precision biometrics, Valencell’s new state-of-the-art sports testing lab, and a little bit about professional cartooning. Get your wearable motor runnin' folks!

 

Return News Roundup

Power, Sensors, Clock Trees, Multicore and Compression Algorithms

by Dick Selwood

September, at least in the Northern Hemisphere, is often seen as the real start of the year. Companies are returning from their summer holidays and revving up with new promotional activities and, particularly in even numbered years in Europe, starting to work towards the huge techno-fest that is electronica in Munich in November. Now this may be a very interesting observation, but why is this relevant? Well, in the last few weeks, I have been exposed to a raft of interesting things, many of which would be worth a whole article in their own right, but, given the limitations of space and time, I have decided to bundle together several different stories from across a wide spectrum of electronics.

Power supplies

Much of what is written in the electronics media concentrates on digital chips and their design and manufacture. We are probably as guilty as most in focusing on these areas, but, after designs have been implemented in these ever-more-challenging process nodes, the chips have to go onto a board, and then they require power.

 

Do-It-Yourself Linux Machine

Synopsys ARC HS38 Processor Has An Embarrassment of Options

by Jim Turley

It’s a good month for microprocessor aficionados, what with the new Cortus twins, the MIPS I6400, AMD’s Hierofalcon, and now Synopsys’s ARC HS38. There’s still some differentiation to be had in this market.

Followers of Synopsys know that the EDA company acquired ARC, the CPU-design firm, several years ago and folded the CPU IP into its DesignWare library system. Indeed, the processor cores are branded as DesignWare, reflecting the reality that ARC processors are more like a design tool than a traditional CPU core. That’s because ARC processors are user-defined. You can add and subtract registers, create your own instructions, invent new condition codes, bolt on in-house coprocessors, and more. Every ARC processor has the capability to be unique and oh-so-finely tuned to its intended application, a feature that many developers really like. It must be working: ARC cores have appeared in 1.5 billion chips just in this year alone.

 

New Chips are HIPP

A Modest Proposal for a New Name

by Kevin Morris

It’s time to speak up for the silent, to give a voice to the voiceless, to defend the downtrodden. Today is the day for action - for the engineering community to unite and right a wrong. We need to come to the aid of a technology in need, to give a name to the nameless. History is watching and will judge us by how we handle this epic dilemma.

I was giving a talk at an FPGA-related technology event recently, and the discussions in the room turned to the new category of devices that combine conventional processors with FPGA fabric on the same chip (or in the same package). These devices, like Xilinx Zynq, Altera SoC FPGAs, and others truly represent a new category of chips. While putting an FPGA next to a conventional processor is nothing new, there are major advantages to combining them into a single device that brings compelling new capabilities to the table.

« Previous123456...302Next »

Login Required

In order to view this resource, you must log in to our site. Please sign in now.

If you don't already have an acount with us, registering is free and quick. Register now.

Sign In    Register