Changing the PCB Axis

Mentor PADS Redefines the Board Genre

by Kevin Morris

Anybody who has ever bought professional PCB software has probably noticed a problem with the way PCB tools have always been packaged, priced, and marketed. Well, anybody except for the folks who actually sell PCB tools, that is. For some reason, PCB tools have always been sold with a built-in wrong assumption - that only big companies with large design teams are doing sophisticated designs. If you were a huge company with giant design teams that required all the “enterprise” features related to team design, collaboration, IP sharing, and library management, the PCB tool vendors gave you all the features needed for leading-edge, high-performance board design.

But, if you were a smaller company or team who didn’t require all the big collaboration features, you got the toy-like “desktop” PCB tools which didn’t include the stuff you needed for high-performance, high-density board design.

 

3D Silicon Measurements

They Require New Approaches

by Bryon Moyer

The 3D nature of aggressive silicon nodes continues to make life difficult for semiconductor equipment guys. Metrology is particularly troublesome, since seeing where edges lie isn’t always sufficient. I’m being somewhat liberal with the term “3D” since it involves more than just the usual 3D structures – FinFETs and 3D NAND stacks. I’m including the impact of multiple-patterning, which involves multiple overlay confirmations on stacks of masks that, in an earlier era, would have been a single mask. So they’re like a 3D decomposition of an erstwhile planar mask.

Let’s break the issues down. First is the fact that we’ve got new 3D dimensions to verify, and it’s hard to do with the old tools. As Applied Materials (AMAT) sees it, three specific structures are difficult: the two mentioned above (FinFETS, 3D NAND) plus vias placed at the bottoms of trenches for dual-damascene processes.

 

Your IoT or Mine?

Big Ideas, Big Money, and the “Your IoT" Design Competition

by Amelia Dalton

You’ve had IoT design swirling around in your head for years. It’s your carpool companion on the way to work, it's your daydream during the day, and it's the buzz that keeps you awake at night. Well folks, it's time to get that IoT dream of yours off the cocktail napkin and into the real world! My guest this week is Kamran Shah (Silicon Labs) and he’s here to introduce us to the “Your IoT" design competition. Kamran breaks down the who, what, when, and where of this new design contest and delivers the goods on how you can enter this competition. Also this week, we look at a groundbreaking new technology called Wi-Fo coming out of Oregon State University that hopes to boost our Wi-Fi signals by 10X!

 

A Circuit Board for the Bees

Unexpected Technology on the Farm

by Bryon Moyer

This is a story about some of the finickiest customers you can imagine. It’s also a story of great patience.

Let’s start with bees. Bees make three things: wax, honey, and eggs. OK, only the queen makes the eggs, but she still qualifies as a bee. In modern commercial beekeeping, a hive consists of a stack of boxes. Each box has several “frames” inside. Each frame holds the familiar wax honeycombs built by the bees. Each new frame has a starting pattern that guides the bees as they create the honeycomb.

By hive design, the bottom box houses the queen and all of the brood (eggs and developing young). A barrier prevents the queen from moving to upper boxes and laying eggs throughout the hive (although workers can get through). So the upper boxes are only for honey. Within the brood box, the size of the starting frame pattern determines the size of the comb build-out. Larger cells house drone eggs; smaller cells house worker eggs.

 

A Case of Double Paranoia

Athena Makes Its Crypto Blocks Harder to Hack

by Jim Turley

“In theory, there is no difference between theory and practice. In practice there is.” – Yogi Berra

There’s theory, and then there’s practice.

In theory, nearly anyone should be able to throw a baseball at 90 MPH. In practice, very few can actually do it. In theory, Windows 3.1 was an intuitive, easy-to-use operating system GUI. In practice, people screwed up their PCs with alarming regularity. In theory, cryptography is an intensive subgenre of mathematics. In practice, it’s mostly about the sloppy analog nature of submicron electronic circuits.

 

Cramming Moore Components

Moore’s Law Turns Fifty

by Kevin Morris

It’s been a half-century since Gordon Moore published “Cramming More Components Onto Integrated Circuits” in the April 19, 1965 edition of Electronics Magazine. It was another five years before Carver Mead dubbed Moore’s prediction in that article - about progress in integrated circuit density - “Moore’s Law,” and another five years after that before Moore revised his original “doubling every year” prediction to “doubling every two years.” At its simplest level, then, Moore’s Law predicts that the number of transistors that can be fabricated on a single chip will double every two years.

The fifty years that have followed that prophetic piece have seen nothing short of the most amazing advances in human history. Moore originally predicted that the trend would continue for “at least ten years,” but the exponential he foresaw has held almost miraculously steady for five times that long. Some would say that Moore brought incredible insight with his prediction. Others would say he was lucky. Still others would claim that this is an example of self-fulfilling prophecy. Whatever the case, the profound impact of that one metric - “number of transistors on a single chip” - on just about every aspect of our global society is almost unfathomable.


Login Required

In order to view this resource, you must log in to our site. Please sign in now.

If you don't already have an acount with us, registering is free and quick. Register now.

Sign In    Register