My Ruler Must Be Broken

Measuring Power Consumption Can Drive You Crazy

by Jim Turley

“The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' but 'That's funny...'” – Isaac Asimov

According to Adam Savage, the difference between science and just screwing around is writing it down. It’s the measurement – the annotation, the calibration, the methodical note-taking – that separates good science (and engineering) from mere hacking and tinkering. Without good measurements there can be no good science.

So raise a caliper and spare a thought for the measurers in our industry - the ones wielding the oscilloscope probes, the voltmeters, the electron microscopes. For they are the ones who enable us to produce better, faster, and more reliable electronics.

 

FPGA Synthesis Showdown

The Big Game That Never Ends

by Kevin Morris

I’ll be the first to admit that I don’t understand cricket, but I’m told that cricket matches can sometimes run for days on end, and that it’s often unclear who’s winning until, suddenly and unexpectedly, one team meets some arbitrary victory conditions and then goes home to celebrate with a few pints. The FPGA synthesis game is a lot like that. It’s a high-stakes game with vast amounts of revenue at stake, not to mention some serious technology bragging rights, but it’s never really clear who’s ahead, who’s behind, or even what the rules were in the first place. It’s been going on that way for something like twenty years, and despite fierce competition and incredible technological advances in the tools, the scoreboard is still basically a bunch of gibberish. Nonetheless, the audience is stuck on the edge of their seats (Maybe they’ve been Super Glued there?) watching every move in this weird and wacky contest between tool nerds that have never met.

 

A Non-FinFET Path to 10 nm

GlobalFoundries’ FD-SOI Alternative

by Bryon Moyer

It was the coolest transistor development in many a year. Rather than continually squishing transistor parts closer and closer together, we flipped it to vertical and celebrated the arrival of the FinFET.

Which was great: it gave us a way to keep increasing performance in many of the applications where the value lies in the speed of the circuit. But after the initial party was over and we started picking up the pointy party hats and nursing the hangovers with massive doses of ibuprofen, we started looking at the bill. FinFET is nice, but it’s also expensive. And, while we’re throwing stones, it’s also not so great for analog and RF designers based on the quantized nature of the gate. You can’t increase channel dimensions by 1.5 times; it’s either 1 or 2.

 

Jumping Jack Flash Memory

3D Flash and Beyond

by Amelia Dalton

In this week’s Fish Fry, we’re exploring everyone’s favorite non-volatile memory technology: flash. (And not just any old kind of flash!) Scott Nelson from Toshiba gives us the scoop on a new 3D flash memory technology. We discuss the advantages of 3D flash memory and look at how 3D flash memory will change how we use memory technology in the future. Keeping with our 3D theme, we also check out a new 3D printing technique developed at Northwestern University that aims to make metallic 3D printing cheaper, faster, and more robust than ever before.

 

How to Select the Right Embedded Design Software

by Mats Pettersson, Altium

Regardless of your job or industry, things are moving faster than ever. With breakthroughs in technology happening on a regular basis, new competitors can disrupt and unseat established businesses that have been built over many years. This phenomenon is no different for embedded software developers. These changes are creating pressure to complete the job faster and more efficiently than ever before, while also ensuring that software is high-performance and bug-free.

In all honesty, it can be a bit overwhelming.

With demands and pressure piling up, it’s vital to have the right embedded software design tools that can make your job easier — well, at least not make it any harder by having a lot of “work-arounds” and outdated features.

 

The Business of the Impossible

ASML’s EUV Lithography Tools Push the Boundaries of Invisible

by Jim Turley

There aren’t many industries where 15 units qualifies as “a big order.”

Battleships. Nuclear power plants. And EUV tools.

For the 14,000 employees at Dutch lithography company ASML, 15 orders for EUV tools is a big deal. Even though that number spans five years and four generations of the company’s EUV equipment, it’s still considered “volume.” Walmart they ain’t.

EUV (extreme ultraviolet) lithography is still is bit space-age and sci-fi for many chipmakers. We’ve been shining DUV (deep ultraviolet) light on our chips for quite a while now, but the limits of that technology are making themselves known.


Login Required

In order to view this resource, you must log in to our site. Please sign in now.

If you don't already have an acount with us, registering is free and quick. Register now.

Sign In    Register