feature article
Subscribe Now

New MIPS CPUs are Virtually Better

M5100 and M5150 Add Tasty Virtualization to the MIPS Recipe

If multiple CPUs aren’t enough for you, how about multiple operating systems on one CPU? That’s what virtualization is all about, and MIPS now offers it in its low-end range of embedded microprocessor cores.

The CPU company that’s part of Imagination Technologies recently rolled out two sibling processors for embedded designers who have the budget for SoC development. The new M5100 and M5150 CPU cores add virtualization to the already familiar MIPS 32-bit architecture.

The M in the product name tells you that these are comparatively low-end MIPS processor designs, as opposed to the midrange I-series or the performance-oriented P-series. If you’re still stuck on the previously (short-lived) product names, this would be a microAptiv, not an interAptiv or proAptiv. Got all that?

The 51xx twins maintain all the usual MIPS goodness from previous generations, including the dual 32-bit and 16-bit instruction sets, DSP extensions, optional FPU, and room for coprocessors. Where the two designs differ is in their back-end interfaces to the rest of your chip. The 5100 is considered an “MCU design,” because it doesn’t have caches and has a somewhat more limited MMU. The 5150 sports dual caches, a “flash accelerator,” and a more fully realized MMU. (Public service announcement: 5150 is also the police code for ‘criminally insane.’ Just FYI.)

What the two cores share is an extra privilege level and related hardware to allow you to run up to seven(!) separate operating systems on one processor. You could always run multiple OS’s on a single MIPS CPU, but you had to tweak the OS code to do it. Now, the 51xx cores can host unmodified operating systems while still keeping them separate from one another. This kind of virtualization is getting more popular with embedded developers who want one OS for real-time control and another OS for the user interface or for backward compatibility. Virtualization can also enhance security by isolating code spaces from one another.

There are other security-related tweaks to the 51xx twins, but my favorite is the random-delay feature. With this enabled, the processor will insert random pipeline bubbles, or stalls, in order to thwart power-analysis hacks. And here I just thought my code was flaky.

The 5100 twins should run in the neighborhood of 500 MHz in 28nm silicon; expect 350-ish in a low-power 65nm process. As with most synthesizable CPUs, they can be optimized for either maximum speed or minimum area. Speed doesn’t kill, but it does cost you. A 5100 with all the goodies, including CPU, FPU, DSP, and dual 32K SRAMs will sprawl over 0.23mm2 of 28nm silicon when it’s optimized for speed. The same CPU core, minus the two SRAMs, occupies just 0.04mm2 of area with space optimization turned on, a more than 5× reduction. In 65nm silicon, the difference isn’t quite as stark (0.20mm2 versus 0.77mm2), since the SRAMs and the logic don’t scale the same way. Call me old-fashioned, but fitting a 32-bit MCU into just 0.04mm2 strikes me as pretty impressive. That’s a rounding error.

MIPS continues to keep pace with archrival ARM and the other CPU-licensing companies, producing new core variations as needed. The M51xx pair aren’t radically different from the entry-level MIPS cores that came before them, but their one big shiny new feature, virtualization, makes enough of a difference to keep potential customers on the phone. If embedded devices become as complex and security-critical as they seem to be, that virtualization is going to be an important feature. 

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

PIC32CX-BZ2 and WBZ451 Multi-Protocol Wireless MCU Family
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Amelia Dalton and Shishir Malav from Microchip explore the benefits of the PIC32CX-BZ2 and WBZ45 Multi-protocol Wireless MCU Family and how it can make IoT design easier than ever before. They investigate the components included in this multi-protocol wireless MCU family, the details of the software architecture included in this solution, and how you can utilize these MCUs in your next design.
May 4, 2023
40,187 views