Enabling Creepy… and Cool

Movidius Camera Processor Helps Drones As Well As Doctors

by Jim Turley

Video surveillance, CCTV, camera-toting drones, cellphone video, stoplight cameras – they’re everywhere! It seems as though no public space isn’t being recorded, filed, uploaded, and possibly analyzed for malfeasance. The common factor in all these scenarios is digital cameras.

And what do all digital cameras need? Lots of storage, lots of bandwidth, and lots of processing power. Grabbing frame after frame of unrefined, uncompressed video isn’t interesting. You need to massage the video before it’s useful. That means some combination of white balance, edge detection, smoothing, compressing, artefact reduction, and possibly image recognition. That’s a lot of work on a lot of pixels, in very little time.

 

Why Don’t They Just…

The Quest for Truth in Engineering

by Kevin Morris

“Why don’t they just put solar cells on top of cars and power them that way?”

His tone implied that the engineers designing cars were just idiots, and he was sure he could do better - with just this one idea. I was going to answer with some helpful information about the amount of energy required to operate an automobile, the amount of energy collected by even idealized solar cells, and the amount of area available on top of a typical vehicle. I didn’t get the chance.

His friend interrupted, “Well that’s just the government shutting them down. The oil companies have the government in their pocket, and they’re not about to let anyone develop technology like that. It’s the same with that 200 MPG carburetor that guy in Florida invented…”

Now, I was more hesitant to speak. I wanted to explain that modern, sensor-driven, computer-controlled fuel injection systems did a much better job achieving near-ideal fuel-air mixtures than any carburetor could ever hope to accomplish. I didn’t get the chance.

 

Where is the Value? Where is the ROI?

IoT Business Model Ruminations

by Bryon Moyer

When you think about it, the much-vaunted launch of the Internet of Things (IoT) represents an enormous investment in research, development, and rollout. Much is made of all the cool things we’ll be able to do once it’s all in place, but I see less discussion of what the return will be on all of that investment. After all, some of us may be focused on this because we think the technology is cool, but someone else has to pay us, and so they’re going to want to see something for their efforts in the long-run.

You might wonder, for example, why a simple, self-respecting thermostat maker would want to get all complicated by adding a bunch of functionality to the poor little wall-mounted bugger, bringing the phone and cloud into the party as well. If you’re that thermostat guy and you’re using classical marketing thinking, then one reason for doing this might be so that your thermostat will do more than your competitors’, and so you’ll sell more than they will.

The return? The extra profits from the extra sales.

 

From the Cradle to the Cloud

Education Meets High Tech

by Amelia Dalton

This week Fish Fry is all about technological innovation in education. From kindergarten to college, from Malaysia to Texas, we look into recent technological advances that aim to even the educational playing field in the United States and across the globe. My first guest is Scott McDonald (Rorke Global Solutions). Scott unveils Rorke’s new digital learning system and discusses with me how Rorke was motivated to break ground on this high tech education revolution. (We also throw in some basketball trash talk.) Keeping with our education theme, Silicon Cloud International CEO Mojy Chian joins Fish Fry to explore the future of cloud computing and how Silicon Cloud International's educational cloud centers hope to create a whole new generation of chip designers.

 

Who Controls the Power?

Open Power Foundation Aims to Make PowerPC More Plentiful

by Jim Turley

Once upon a time, there were many little RISC processors frolicking in the deep green microprocessor forest. There was the jaunty little ARM. The bright little SPARC. The mighty little MIPS. The aristocratic little PowerPC. And so many others. They all played and laughed and had ever such a good time.

Then, one by one, the happy little RISC processors started disappearing. Were they gobbled up by the big, bad CISC processor that lurked in the woods? Did they cross over the Wheatstone Bridge and into another land? Or did they just get lost in the tall grass, wandering aimlessly until their mommies and daddies forgot about them?

 

FPGA-Prototyping Simplified

Cadence Rolls New Protium Platform

by Kevin Morris

System on Chip (SoC) design today is an incredibly complicated collaborative endeavor. By applying the label “System” to the chips we design, we enter a realm of complex, interdisciplinary interactions that span realms like analog, digital, communications, semiconductor process, and - with increasing dominance - software. Since the first SoCs rolled out a mere decade or so ago, the composition of design teams has shifted notably, with the percentage of cubicles occupied by software developers increasing much more rapidly than those of any of the other engineering disciplines. In most SoC projects today, software development is the critical path, and the other components of the project are merely speed bumps in the software development spiral.

« Previous123456...293Next »

Login Required

In order to view this resource, you must log in to our site. Please sign in now.

If you don't already have an acount with us, registering is free and quick. Register now.

Sign In    Register