editor's blog
Subscribe Now

Universal Verification Stimulus Format

We used to be ok with the verification silos we grew up with. You’ve got your simulation guys over here helping with circuit and block verification. You’ve got your emulation group over there checking out larger system chunks or running software. In yet another corner, you’ve got your virtual platforms running software.

But really, there can be a lot of rework involved as an SoC migrates from being individual bits and pieces, individually tested, to a unified system, holistically tested. So a group at Accellera has formed to standardize a stimulus format so that verification intent and stimulus can be ported to different environments.

The scope here appears to be twofold. On the one hand, you’ve got different verification methodologies: simulation, emulation, etc. The different platforms may expect different inputs – even if just variations. On the other hand, this also appears to be about scale – blocks and components vs. complete systems.

One of the big differentiators at the system level is the use of software to test out the hardware platform. Note that this is different from using a virtual platform to test software: in that case, it’s the software that’s being tested with a “known good” platform model. The focus of this stimulus effort is more about verifying the platform itself; when software is used for that, then it’s the software that’s “known good.” So, of the silos I mentioned above, that last one seems unlikely to be affected. Then again, it’s different from the others, since it’s not about hardware verification.

Because the low-level stimulus details for, say, simulation will be different from that for software, this is more about capturing intent and verification scenarios for automated generation of the actual stimulus that makes its way into the test environment.

Drawing.png 

The first meeting just happened a week ago; if it’s an activity you’d like to be involved in, now’s a good time to jump in. Apparently a roadmap hasn’t yet been sketched out, so it’s still early days.

You can find more in their announcement.

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Intel AI Update
Sponsored by Mouser Electronics and Intel
In this episode of Chalk Talk, Amelia Dalton and Peter Tea from Intel explore how Intel is making AI implementation easier than ever before. They examine the typical workflows involved in artificial intelligence designs, the benefits that Intel’s scalable Xeon processor brings to AI projects, and how you can take advantage of the Intel AI ecosystem to further innovation in your next design.
Oct 6, 2023
25,119 views