editor's blog
Subscribe Now

12-Way MEMS Switch

MEMS is entering yet another space traditionally done with electronics: RF switching. The switching comes as a result of the ridiculous number of bands (currently 26, by DelfMEMS’s count) that vie for love and attention. Transistors have typically been used for these switches.

That’s fine when the transistor is on, but when it’s off, well, it leaks and behaves non-linearly – especially at high frequencies.

So DelfMEMS (we looked at some cap arrays of theirs before) thought that a micromechanical switch would be better. Instead of an electrical channel created in a FET, they use a membrane that, depending on its position, opens or closes a mechanical connection. So when it’s open, it’s open – no leaking.

And what size switch to make? DelfMEMS says that, in particular in Asia, 12 ways is typical – it’s one of the first questions they get. The high and low bands are typically split first, after which the 12-way switch takes care of the rest (yeah, I know… 26/2>12… details…). Technically this is a single-pole, 12-throw switch (one circuit with 12 choices).

SP12T-Test-Board_ret.jpg 

(Image courtesy DelfMEMS)

For a digital guy like me, this looks a lot like a demux. Or a mux, if you turn it around. Except that, with standard digital logic, you can’t simply turn a mux around and use it as a demux. But this isn’t digital logic; these are switches, and yes, you can turn them around and use them either to mux 12 signals into one or to take one signal and send it one of 12 ways.

You can find more info in their announcement.

Leave a Reply

featured blogs
Jul 20, 2018
https://youtu.be/KwrfcMtbMDM Coming from CDNLive Japan (camera Asushi Tanaka) Monday: Nicolas's Recipe for Digital Marketing in EDA Tuesday: Embargoed announcement Wednesday: Trends, Technologies, and Regulation in China's Auto Market Thursday: Breakfast Bytes Guide...
Jul 19, 2018
In the footer of Samtec.com, we'€™ve always made it easy to contact us by phone, email, or live chat (even fax back in the day!). To continue to progress this theme, you'€™ll now find a new helpful tool in the footer area of Samtec.com. This tool will match you up with yo...
Jul 16, 2018
Each instance of an Achronix Speedcore eFPGA in your ASIC or SoC design must be configured after the system powers up because Speedcore eFPGAs employ nonvolatile SRAM technology to store the eFPGA'€™s configuration bits. Each Speedcore instance contains its own FPGA configu...
Jul 12, 2018
A single failure of a machine due to heat can bring down an entire assembly line to halt. At the printed circuit board level, we designers need to provide the most robust solutions to keep the wheels...