editor's blog
Subscribe Now

PNI’s Wearable (and IoT) Dev Kit

Wearables are hot these days, and PNI Sensor sees a good fit in that space for their SENtral chip. They’ve bundled it into what they call their SENtrode, together with appropriate algorithms.

Wearable_Sde_By_Side.jpgThey’re even working their own heart-rate monitoring algorithms – evidently a particularly difficult task when you’re in motion (which you are likely to be with a wearable). Good heart-rate monitors have proven challenging to create – unless you go with the golden reference of a chest strap, which isn’t exactly comfortable or convenient. They’re hoping to crack that nut with their own approach.

While there’s focus on wearables, they actually launched two versions: one in a bracelet-sized form factor (the wearable one), and then one optimized and housed in a fashion more appropriate to internet-of-things (IoT) gadgets. (Although, realistically, wearables are part of the IoT – or perhaps the Internet of Clothing and Accessories…)

IoT_Dev_Kit.jpgThe features differ somewhat between the two versions. The IoT one swaps humidity sensing for the heart-rate monitor. The algorithms swap barometric pressure and humidity for altitude and motion-compensated heart rate.

Of course, there’s one parameter that tends to trump all others, particularly in a wearable: power. The SENtrode solution runs at about 380 µW. Honestly, it’s a bit hard to compare, however, since numbers don’t tell the whole story. For example, Quicklogic’s numbers may come in lower, but PNI says that they don’t have a floating point unit and that their algorithms are less sophisticated.

Makes me wonder whether we need some serious work on sensor power benchmarking… EEMBC perhaps?

This is a development kit; they’re releasing the software, the schematics, the whole shebang. It’s also modular so that parts can be swapped out. It’s expected that a developer will be optimizing hardware for a specific application.

You can find more detail in their release.

 

(Images courtesy PNI Sensor.)

Leave a Reply

featured blogs
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
Analog Behavioral Modeling involves creating models that mimic a desired external circuit behavior at a block level rather than simply reproducing individual transistor characteristics. One of the significant benefits of using models is that they reduce the simulation time. V...
Apr 16, 2024
Learn what IR Drop is, explore the chip design tools and techniques involved in power network analysis, and see how it accelerates the IC design flow.The post Leveraging Early Power Network Analysis to Accelerate Chip Design appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Dependable Power Distribution: Supporting Fail Operational and Highly Available Systems
Sponsored by Infineon
Megatrends in automotive designs have heavily influenced the requirements needed for vehicle architectures and power distribution systems. In this episode of Chalk Talk, Amelia Dalton and Robert Pizuti from Infineon investigate the trends and new use cases required for dependable power systems and how Infineon is advancing innovation in automotive designs with their EiceDRIVER and PROFET devices.
Dec 7, 2023
17,233 views