editor's blog
Subscribe Now

Shootout at the FinFET Corral

It’s high noon at IEDM. Both Intel and IBM have “late-breaking news” with their 14-nm FinFET numbers. The giant room is filled to bursting capacity. I’m lucky enough to have some space along the side wall, far from the screen. So far, in fact, that much of what’s on the screen is completely illegible.

Oh, and did I mention photography is not allowed? So… you can’t see the information, you can’t record it even if you saw it… you could busily write what little you can see but then you’re not listening… Oh well, the paper is in the proceedings and I should be able to get the slides after the fact. Right?

Nope. IBM politely declined. Intel didn’t respond at all. (Good thing the proceedings have contact information…) So if the paper is the only record of what happened, then why bother with the presentation? Except for those in the center of the room…

Yeah, I was frustrated, since, in these presentations, you can get a better sense of context and perspective, but only if you have a photographic memory. And I don’t. (And getting less so with each day.) There were definitely points that were made in the presentations that are not in the paper… so I can’t report them.

The whole deal here is Intel’s 14-nm bulk-silicon process vs. IBM’s 14-nm SOI process. And here’s the major takeaway: cost and performance have improved. Moore’s Law, reported as dead at the leading nodes, has taken a few more breaths. It’s just like the good old days, where area shrunk enough to make up for increased costs, and performance gained substantially.

I was going to compare some numbers here, but it’s too spotty to find numbers that they both reported in their papers. For instance, IBM reports a 35% performance improvement over 22 nm; as far as I can tell, Intel reported a performance improvement in the presentation, but didn’t put it in the paper. (I assume that’s intentional.)

Some notable process points:

  • IBM
    • Has a dual-work-function process that allows optimizing both low- and high-VT devices without resorting to doping. No details provided on that process.
    • 15 layers of copper
    • Includes deep-trench embedded DRAM.
  • Intel
    • Uses sub-fin doping.
    • Fin is now much more rectangular than their last edition.
    • 13 interconnect layers
    • They use air-gapped interconnects: pockets of air between lines on select metal layers that reduce capacitance by 17%. They were not willing to discuss how they do the air-gapping, just that they do.
    • Their random variation for VT, which grew from node to node for many nodes, is almost down to where it was at the 90-nm node.

Select images data follow…

[Suggestion to IEDM: require that presentations be made available. They shouldn’t be presenting material if they don’t have the cojones to stand behind it after the presentation…]

Cross-sections:

IBM:

IBM_photo.png

Intel:

Intel_photo.png

 

Pitches:

IBM:

 IBM_table.png

 Intel:

Intel_table.png


Transistor performance:

IBM:

IBM_xstor.png

Intel:

Intel_xstor.png

All images courtesy IEDM.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTekā€™s design process usually relies on human intuition, but with Cadenceā€™s Optimality Intelligent System Explorer and Clarity 3D Solver, theyā€™ve increased design productivity by 75X. The Optimality Explorerā€™s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

GaN FETs: D-Mode Vs E-mode
Sponsored by Mouser Electronics and Nexperia
The use of gallium nitride can offer higher power efficiency, increased power density and can reduce the overall size and weight of many industrial, automotive, and data center applications. In this episode of Chalk Talk, Amelia Dalton and Giuliano Cassataro from Nexperia investigate the benefits of Gan FETs, the difference between D-Mode and E-mode GaN FET technology and how you can utilize GaN FETs in your next design.
Mar 25, 2024
4,394 views