editor's blog
Subscribe Now

Multicore Task-Management Standard Implemented

In spring of last year, we described a new standard from the Multicore Association for use in managing tasks on multicore embedded systems. Called MTAPI, it abstracts away details of exactly where a particular task might run at any given time, allowing for fixed or real-time binding to a core or hardware accelerator.MTAPI_image.jpg

Well, standards are all well and good, but then someone has to write code that actually implements the standard. Last month, Siemens announced an open-source BSD-licensed implementation that supports homogeneous multicore systems.

The MTAPI implementation was part of a larger multicore support package that they released, called Embedded Multicore Building Blocks (EMB2). It also includes implementation of some popular algorithm patterns as well as various structures and frameworks focused on streaming applications (an extremely common application type that is prone to challenging performance – meaning that effective multicore utilization makes all the difference).

They’ve segregated the code such that only a bottom base layer has any interaction with an underlying OS. This makes most of the code independent of the operating system (OS). They support Linux and Windows, but changes to the base layer will allow ready porting to other OSes.

Next year, they plan to support heterogeneous systems – a tougher deal because each node may have a different processing architecture, and memory may be scattered all over the system. In so doing, they’re likely to bring the venerable MCAPI standard into play. That, the first of the Multicore Association standards, handles communication between disparate cores running different OS instances.

You can find more info in their announcement.

Leave a Reply

featured blogs
Jul 18, 2018
I recently talked with Mr Takizawa of TDSC about their use of Cadence's Interconnect Workbench (IWB). You may not recognize those initials. Toshiba split itself into three companies last year and one of them is TDSC, or Toshiba Electronic Devices & Storage Corporatio...
Jul 16, 2018
Each instance of an Achronix Speedcore eFPGA in your ASIC or SoC design must be configured after the system powers up because Speedcore eFPGAs employ nonvolatile SRAM technology to store the eFPGA'€™s configuration bits. Each Speedcore instance contains its own FPGA configu...
Jul 12, 2018
A single failure of a machine due to heat can bring down an entire assembly line to halt. At the printed circuit board level, we designers need to provide the most robust solutions to keep the wheels...