editor's blog
Subscribe Now

TSVs: Like Vias, Only 1000X Deeper

We recently looked at Applied Materials’ solution to the challenges of lining small vias: using cobalt. But those are through-dielectric vias. What about through-silicon vias (TSVs)? After all, they can be a thousand times deeper than a standard via, so if a standard via is hard to cover, imagine how hard it must be for a TSV.

Of course, we’re talking a wider via, but AMAT says that standard physical vapor deposition (PVD) tools do an inadequate job of coating the TSVs when applying the barrier, for lots of the same reasons we discussed in the cobalt story.

Their solution to the TSV issue isn’t quite as radical as a new metal; it involves tightening up the angle of dispersion for the metals, providing better coverage. With better coverage, the barrier can also be made thinner, saving cost. A thinner layer is faster to deposit, improving throughput (and reducing cost).

Figure.png

 

(Image courtesy Applied Materials)

In addition, they’ve built a production-worthy chamber for use with titanium rather than the more typical “proven” tantalum. Titanium apparently being cheaper than tantalum. Both can be integrated with the copper seed.

You can read more about their Ventura PVD in their announcement.

Leave a Reply

featured blogs
Jul 16, 2018
This week it is CDNLive Japan on Friday July 20th. I will be there so obviously this will be my latest trip to Japan...but we will start by looking at my first trip to Japan. The first trip I made to Japan was in 1983. This was very early. If you have been in semiconductors o...
Jul 12, 2018
A single failure of a machine due to heat can bring down an entire assembly line to halt. At the printed circuit board level, we designers need to provide the most robust solutions to keep the wheels...
Jun 29, 2018
Once you'€™ve made the correct decision to add Speedcore eFPGA IP to your ASIC or SoC design, the next question you'€™ll need to answer is how large to make the eFPGA. That'€™s a multi-dimensional question because Speedcore eFPGAs contain many types of blocks including:...