editor's blog
Subscribe Now

A Reverse Proof Mass?

This continues both the theme of “stuff at Sensors Expo” and non-traditional approaches to common sensors. Only this time, it’s the most ubiquitous of motion sensors, the accelerometer.

Most accelerometers use some sort of “proof mass,” a piece of silicon or metal or quartz or… whatever. Inertia makes the proof mass “move” in the opposite direction of acceleration, and you can measure that apparent movement.

Memsic (whose mag sensor we just looked at), does something different. The fundamental principle of inertia is still the same, but the proof mass, well, isn’t a mass. If you’ve ever carried a helium balloon in your car, you’ve seen the effect. (I haven’t, or I haven’t been perspicacious enough to notice and remember, so I’m taking their word for it.) When you accelerate your car, you’d expect the balloon to move backwards, just like those toys and stray French fries and the dog do.

But it doesn’t. It moves forwards. Why? Because the gas is lighter than the surrounding air (even compressed in a balloon), and the heavier air moves back, displacing the balloon forwards.

Memsic exploits this same behavior by heating gas in a cavity. They use nitrogen, although that’s not really critical. The point is that, by heating the middle of the chamber, you get this “ball” of warmer gas (I keep wanting to call it a “bolus” but I’m not sure if that word would apply). This heated mass is less dense – and hence lighter – than the gas on either side of it. So when the unit accelerates, it moves not back, like a normal proof mass would do, but forward, in the direction of acceleration. It’s like the proof mass is all the non-heated gas.

By putting temperature sensors at either end of the chamber, you can detect the approach and retreat of the heated gas and use that to signal acceleration.

The benefits of this are that you don’t get any of the messiness of a normal proof mass. There are no issues of shock, vibration, resonance, or stiction. Its calibration is more stable and it has better bias stability. The main drawbacks are that it’s not particularly responsive, so you can’t do high-G shock detection. And, of course, you need power for the heater, although they say it’s not that much – you could still use this in a phone.

The primary apps they’ve seen so far are for electronic stability control in cars and high-end inclinometers.

You can find out more on their website.

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Miniaturization Impact on Automotive Products
Sponsored by Mouser Electronics and Molex
In this episode of Chalk Talk, Amelia Dalton and Kirk Ulery from Molex explore the role that miniaturization plays in automotive design innovation. They examine the transformational trends that are leading to smaller and smaller components in automotive designs and how the right connector can make all the difference in your next automotive design.
Sep 25, 2023
26,116 views